Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = multi-verse expansion evolution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1859 KB  
Article
Data Flow Forecasting for Smart Grid Based on Multi-Verse Expansion Evolution Physical–Social Fusion Network
by Kun Wang, Bentao Hu, Jiahao Zhang, Ruqi Zhang, Hongshuo Zhang, Sunxuan Zhang and Xiaomei Chen
Energies 2025, 18(12), 3093; https://doi.org/10.3390/en18123093 - 12 Jun 2025
Viewed by 500
Abstract
The accurate forecasting of financial flow data in power-grid operations is critical for improving operational efficiency. To tackle the challenges of low forecasting accuracy and high error rates caused by the long sequences, nonlinearity, and multi-scale and non-stationary characteristics of financial flow data, [...] Read more.
The accurate forecasting of financial flow data in power-grid operations is critical for improving operational efficiency. To tackle the challenges of low forecasting accuracy and high error rates caused by the long sequences, nonlinearity, and multi-scale and non-stationary characteristics of financial flow data, a forecasting model based on multi-verse expansion evolution (MVE2) and spatial–temporal fusion network (STFN) is proposed. Firstly, preprocess data for power-grid financial flow data based on the autoregressive integrated moving average (ARIMA) model. Secondly, establish a financial flow data forecasting framework using MVE2-STFN. Then, a feature extraction model is developed by integrating convolutional neural networks (CNN) for spatial feature extraction and bidirectional long short-term memory networks (BiLSTM) for temporal feature extraction. Next, a hybrid fine-tuning method based on MVE2 is proposed, exploiting its global optimization capability and fast convergence speed to optimize the STFN parameters. Finally, the experimental results demonstrate that our approach significantly reduces forecasting errors. It reduces RMSE by 5.75% and 13.37%, MAPE by 22.28% and 41.76%, and increases R2 by 1.25% and 6.04% compared to CNN-BiLSTM and BiLSTM models, respectively. These results confirm the model’s effectiveness in improving both accuracy and efficiency in financial flow data forecasting for power grids. Full article
Show Figures

Figure 1

21 pages, 724 KB  
Article
Possible Origins and Properties of an Expanding, Dark Energy Providing Dark Multiverse
by Eckhard Rebhan
Universe 2019, 5(8), 178; https://doi.org/10.3390/universe5080178 - 24 Jul 2019
Cited by 3 | Viewed by 3382
Abstract
The model of a multiverse is advanced, which endows subuniverses like ours with space and time and imparts to their matter all information about the physical laws. It expands driven by dark energy (DE), which is felt in our Universe (U) by mass [...] Read more.
The model of a multiverse is advanced, which endows subuniverses like ours with space and time and imparts to their matter all information about the physical laws. It expands driven by dark energy (DE), which is felt in our Universe (U) by mass input and expansion–acceleration. This dark multiverse (DM) owes its origin to a creatio ex nihilo, described in previous work by a tunneling process in quasi-classical approximation. Here, this origin is treated again in the context of quantum gravity (QG) by solving a Wheeler de Witt (WdW) equation. Different than usual, the minisuperspace employed is not spanned by the expansion parameter a but by the volume 2 π 2 a 3 . This not only modifies the WdW-equation, but also probabilities and solution properties. A “soft entry” can serve the same purpose as a tunneling process. Sections of solutions are identified, which show qualitative features of a volume-quantisation, albeit without a stringent quantitative definition. A timeless, spatially four-dimensional primordial state is also treated, modifying a state proposed by Hartle and Hawking (HH). For the later classical evolution, elaborated in earlier papers, a wave function is calculated and linked to the solutions for the quantum regime (QR). It is interpreted to mean that the expansion of the DM proceeds in submicroscopic leaps. Further results are also derived for the classical solutions. Full article
(This article belongs to the Special Issue The Multiverse)
Show Figures

Figure 1

Back to TopTop