Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = multi-axle distributed electric drive heavy-duty vehicle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 9156 KiB  
Article
Research on Optimal Driving Torque Control Strategy for Multi-Axle Distributed Electric Drive Heavy-Duty Vehicles
by Shiwei Xu, Junqiu Li, Xiaopeng Zhang and Daikun Zhu
Sustainability 2024, 16(16), 7231; https://doi.org/10.3390/su16167231 - 22 Aug 2024
Cited by 1 | Viewed by 1951
Abstract
Multi-axle distributed electric drive heavy-duty vehicles have the characteristics of high transmission efficiency, strong maneuverability, and good passability, making them widely used in large cargo transportation. However, the current driving torque control strategies of multi-axle distributed electric drive heavy-duty vehicles lack comprehensive consideration [...] Read more.
Multi-axle distributed electric drive heavy-duty vehicles have the characteristics of high transmission efficiency, strong maneuverability, and good passability, making them widely used in large cargo transportation. However, the current driving torque control strategies of multi-axle distributed electric drive heavy-duty vehicles lack comprehensive consideration of their longitudinal and lateral dynamic characteristics, making it difficult to comprehensively optimize multiple performances such as power economy, comfort, and stability. In order to solve the above problems, This work focuses on a five-axle distributed electric drive heavy-duty vehicle. Firstly, given the differences in dynamics between two-axle vehicles and multi-axle vehicles, the dynamic model of the multi-axle distributed electric drive heavy-duty vehicle and its critical components is constructed. Then, by analyzing the characteristics of power economy, comfort, and stability of the multi-axle distributed electric drive heavy-duty vehicle, an optimal driving torque control strategy based on multiple performance coordination is proposed. Finally, on the hardware-in-the-loop (HiL) platform, the performance of the optimal driving torque control strategy proposed in this paper is verified by using the China Heavy-Duty Commercial Vehicle Test Cycle for Truck (CHTC-HT) and a straight-line acceleration driving condition on a split friction road. The simulation test results show that, compared with the traditional torque average distribution strategy, the proposed optimal driving torque control strategy can reduce the energy consumption rate by 3.45% in CHTC-HT. The strategy is attributed to the driving torque distribution based on the vehicle’s optimal instantaneous energy consumption, and vehicle comfort is also ensured by the driving mode switching frequency suppression. Subsequently, the vehicle’s stability on the split friction road is effectively improved by the torque coordination compensation strategy. This control strategy significantly improves the comprehensive performance of multi-axle distributed electric drive heavy-duty vehicles. Full article
(This article belongs to the Section Sustainable Transportation)
Show Figures

Figure 1

21 pages, 4663 KiB  
Article
Research on the Multi-Mode Composite Braking Control Strategy of Electric Wheel-Drive Multi-Axle Heavy-Duty Vehicles
by Shiwei Xu, Xiaopeng Zhang, Yuan Jiao, Lulu Wei, Jingjing He and Xinyu Zeng
World Electr. Veh. J. 2024, 15(3), 83; https://doi.org/10.3390/wevj15030083 - 25 Feb 2024
Cited by 4 | Viewed by 1949
Abstract
Electric wheel-drive multi-axle heavy-duty vehicles have the characteristics of strong maneuverability and good passability, thereby they are widely used in heavy equipment transportation. However, current research on the composite braking of multi-axle heavy-duty vehicles is rare, which is not conducive to improving braking [...] Read more.
Electric wheel-drive multi-axle heavy-duty vehicles have the characteristics of strong maneuverability and good passability, thereby they are widely used in heavy equipment transportation. However, current research on the composite braking of multi-axle heavy-duty vehicles is rare, which is not conducive to improving braking performance and braking energy utilization efficiency. This work proposes a multi-mode composite braking control strategy for the five-axle distributed electric wheel-drive heavy-duty vehicle. Firstly, given the differences in braking dynamics between two-axle vehicles and multi-axle vehicles, the brake dynamics characteristics of multi-axle vehicles are analyzed, and the vehicle dynamics model of multi-axle vehicles is constructed. Next, a multi-mode composite braking control strategy including a fully electric braking state and hybrid electro–hydraulic braking state is proposed in order to improve the braking energy recovery and braking stability. Finally, a hardware-in-the-loop simulation system is established, and the single-braking conditions and China heavy-duty commercial vehicle test cycle-heavy truck (abbreviated as CHTC-HT) are conducted to verify the performance of the braking control strategy. The results indicate that the recaptured braking energy and braking stability are significantly increased by applying the control strategy proposed in this work. Full article
Show Figures

Figure 1

Back to TopTop