Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = mountainous transitional geospace

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 7687 KiB  
Article
The Integration of Land Use Planning and the Varied Responses of Coupled Human–Natural Systems: A Case Study of Changning County in Southwest China
by Yanlan Xie, Xiaobo Liu, Xiaoshuang Zhuo, Shaoyao Zhang and Hao Zhang
Land 2025, 14(5), 1052; https://doi.org/10.3390/land14051052 - 13 May 2025
Viewed by 458
Abstract
An urban–rural–natural imbalance is evident; investigating the spatiotemporal evolution of the transitional geo-space (TG) between them facilitates the integration of urban–rural land use planning. In this study, we proposed a complex system model to explore the interactive dynamics between the social–economic systems and [...] Read more.
An urban–rural–natural imbalance is evident; investigating the spatiotemporal evolution of the transitional geo-space (TG) between them facilitates the integration of urban–rural land use planning. In this study, we proposed a complex system model to explore the interactive dynamics between the social–economic systems and natural ecosystems of Changning County, Southwest China, with the TG being identified and classified across the two systems. Based on a three-dimensional “direction–speed–pattern” framework, we further quantified production–living–ecological space (PLE) changes and examined the impacts of these changes on the TG from 2000 to 2022. The results are as follows: (1) The TG was classified into five categories that were stratified according to the coupling intensity and orientation of the socioeconomic system and natural ecosystems in Changning County. (2) The transition type with the most complex socio-ecological coupling was the type of semi-socioeconomic process–semi-natural ecological process, occupying 32.6% (309.4 km2) of the county’s total area in 2000 and demonstrating the most pronounced spatial dynamics, exhibiting a reduction of 78.6 km2 during the study period. (3) Negative impacts on TG dynamics were observed for the conversion of ecological space into agricultural production space (p < 0.01; R2 > 0.24) and the dynamic degree of PLE transformations (p < 0.01; R2 > 0.13). (4) The impacts of trends in PLE on the TG varied significantly across temporal phases, whereas the CONTAG index exhibited consistently non-significant effects throughout all study periods. This study provides a new insight into understanding the optimization of spatial development patterns in urban–rural–natural regions and offers theoretical support for the governance of national land space and high-quality economic and social development in mountainous areas. Full article
Show Figures

Figure 1

18 pages, 7871 KiB  
Article
Construction of Ecological Security Network in Mountainous Transitional Geospace Using Circuit Theory and Morphological Spatial Pattern Analysis: A Case Study of Taihang Mountain Area
by Ruicong Zhang, Maogui Hu, Anjie Sheng, Wei Deng, Shaoyao Zhang and Jintong Liu
Sustainability 2025, 17(4), 1743; https://doi.org/10.3390/su17041743 - 19 Feb 2025
Viewed by 621
Abstract
Since entering the process of industrialization, human activities have interfered with the original ecological environment, and the expansion of cities has also impacted the ecological service function. In order to maintain the balance of the ecosystem and the stability of ecological security, it [...] Read more.
Since entering the process of industrialization, human activities have interfered with the original ecological environment, and the expansion of cities has also impacted the ecological service function. In order to maintain the balance of the ecosystem and the stability of ecological security, it is very important to establish an ecological security network (ESN), particularly in transitional geospace. To address this, we proposed a framework for mountainous transitional geospace by morphological spatial pattern analysis and circuit theory. Taihang Mountain area is applied as a case, establishing a suitable evaluation system for the mountainous transitional geospace. Using circuit theory to quantitively construct the ESN, it was found that there are 34 ecological sources in the Taihang Mountain area. The corridors primarily run north–south in the east and west but display a mesh-like layout in the central and southern parts. These elements integrated an ESN of “four zones and three lines”. Key ecological pinch point areas are primarily in plains or plateaus, and ecological barrier restoration areas are mainly in basins and mountainous areas. The study provides recommendations for protection and restoration work in the Taihang Mountain area, which hold both theoretical and practical significance for ecological planning. Full article
Show Figures

Figure 1

Back to TopTop