Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = mould foot roller

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 6844 KiB  
Article
Effect of Temperature and Solidification Structure Evolution of S355 Slabs with Different Corner Shapes on Transverse Corner Cracks
by Minglin Wang, Hui Zhang, Heping Liu and Lijun Xu
Metals 2022, 12(8), 1383; https://doi.org/10.3390/met12081383 - 20 Aug 2022
Cited by 2 | Viewed by 2144
Abstract
The evolution process of corner temperatures for a typical micro-alloyed steel S355 is numerically simulated under various working conditions. The microstructure near the corner cracks of the S355 slab is experimentally examined, and the austenite/ferrite transformation temperatures of S355 steel during heating and [...] Read more.
The evolution process of corner temperatures for a typical micro-alloyed steel S355 is numerically simulated under various working conditions. The microstructure near the corner cracks of the S355 slab is experimentally examined, and the austenite/ferrite transformation temperatures of S355 steel during heating and cooling are measured. The results indicate that the right-angle slab corner temperature at the exit of the mould rapidly decreased to below Ar3 under intensive cooling in the foot roller zone. The film-like ferrite began to precipitate along the austenite grain boundary at the slab corner. The transformation from ferrite to austenite cannot be fully realized because the corner temperature cannot be quickly returned to Ac3 or higher. The slab transverse corner cracks occur along the film-like ferrite during the bending process. The chamfered slab, which modifies the original right angle of the slab into the 30° chamfered angle with a chamfered length of 60 mm, can significantly weaken the heat transfer and cooling effect of the slab corner. The chamfered slab corner temperature always remained above Ar3 during the bending and straightening processes. Precipitation of the pro-eutectoid film-like ferrite along the grain boundary cannot occur during cooling for the chamfered slab. The chamfered slab can keep the corner temperature above Ar3 and effectively avoid the occurrence of transverse corner cracks caused by grain boundary embrittlement. Full article
Show Figures

Figure 1

15 pages, 11003 KiB  
Article
Optimization of Process Parameters, Microstructure, and Properties of Laser Cladding Fe-Based Alloy on 42CrMo Steel Roller
by Jiang Ju, Yang Zhou, Maodong Kang and Jun Wang
Materials 2018, 11(10), 2061; https://doi.org/10.3390/ma11102061 - 22 Oct 2018
Cited by 47 | Viewed by 5537
Abstract
The mould foot roller is a key component of a continuous casting machine. In order to investigate the possibility of using laser cladding to repair mould foot roller, Fe-based powders and 42CrMo steel are used in this work. The laser cladding process parameters [...] Read more.
The mould foot roller is a key component of a continuous casting machine. In order to investigate the possibility of using laser cladding to repair mould foot roller, Fe-based powders and 42CrMo steel are used in this work. The laser cladding process parameters were optimized by orthogonal experiments. The chemical compositions, microstructure, properties of the cladding layer under the optimum process parameters, and substrate were systematically investigated by using optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), microhardness test, wear test, and salt spray corrosion test. The results indicate that the primary factor affecting the width and depth of the cladding layer is laser power. The scanning speed also has a significant effect on the height of the cladding layer. The optimum process parameters for repairing the mould foot roller are 2 kW laser power, 4 mm/s scanning speed, and 15 g/min feeding rate of powder. Along the depth direction of the cladding layer, the microstructure of the coating gradually transforms from plane crystal, cell grains, or dendrites to equiaxed grains. The matrix is mainly martensite with retained austenite; the eutectic phase is composed of netlike M2B, particulate M23(C,B)6, and M7(C,B)3 phase. The hardness of the cladding layer is significantly improved, about three times that of the substrate. The weight loss of the cladding layer is just half that of the substrate. Its wear resistance and corrosion resistance have been significantly improved. The work period of the laser cladding-repaired foot roller is much longer than for the surfacing welding-repaired one. In summary, laser cladding technology can increase the life of mould foot rollers. Full article
Show Figures

Graphical abstract

Back to TopTop