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Abstract: The evolution process of corner temperatures for a typical micro-alloyed steel S355 is
numerically simulated under various working conditions. The microstructure near the corner cracks
of the S355 slab is experimentally examined, and the austenite/ferrite transformation temperatures
of S355 steel during heating and cooling are measured. The results indicate that the right-angle slab
corner temperature at the exit of the mould rapidly decreased to below Ar3 under intensive cooling
in the foot roller zone. The film-like ferrite began to precipitate along the austenite grain boundary
at the slab corner. The transformation from ferrite to austenite cannot be fully realized because the
corner temperature cannot be quickly returned to Ac3 or higher. The slab transverse corner cracks
occur along the film-like ferrite during the bending process. The chamfered slab, which modifies
the original right angle of the slab into the 30◦ chamfered angle with a chamfered length of 60 mm,
can significantly weaken the heat transfer and cooling effect of the slab corner. The chamfered slab
corner temperature always remained above Ar3 during the bending and straightening processes.
Precipitation of the pro-eutectoid film-like ferrite along the grain boundary cannot occur during
cooling for the chamfered slab. The chamfered slab can keep the corner temperature above Ar3 and
effectively avoid the occurrence of transverse corner cracks caused by grain boundary embrittlement.

Keywords: transverse corner crack; micro-alloyed steel; film-like ferrite; phase transformation
temperature; chamfered mould

1. Introduction

Transverse corner crack defects of the slab are common in the continuous casting
production of micro-alloyed steel in major steel companies worldwide [1–3]. The existence
of transverse corner cracks not only increases the production cost, but also reduces the
production efficiency, making the slab impossible to realize the hot delivery and hot
charging, which is a key point that affects the smoothness of the cast-rolling interface.

Over the years, extensive research on the control method of the defects in continuous
casting of steel have been performed [4–7]. In the existing technology, several control
methods are generally used. The first method is to optimize the secondary cooling water
system, reasonably reducing the amount of secondary cooling water, increasing the corner
temperature of the slab, and avoiding the third brittle zone of the slab during bending
and straightening [8–10]. Secondly, using the method of rapid cooling and reheating at
the slab corner, the slab corner temperature is quickly reduced to below Ar1 (i.e., the
ending temperature of austenite to ferrite transformation during cooling), and thereafter
returned to the temperature above Ac3 (i.e., the ending temperature of ferrite to austenite
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transformation during heating). On the basis of the phase transformation for the purpose
of refining the grain, the second phase precipitation of particles, such as Nb(CN) and
Ti(CN), on the pre-eutectoid ferrite film, improved the high-temperature toughness of the
steel [11–15]. Finally, using chamfered mould technology to reduce the cooling effect of
the slab corner and increase the temperature of the slab corner concurrently improved the
stress state of the slab corner and effectively prevented the occurrence of transverse corner
cracks in the slab [16–20].

However, in actual production, transverse cracks at the corners of the cast slab not
only occur at the corners, but also usually appear at a distance of 5 to 15 mm from the
corners. The micro-alloying elements such as Nb, V, and Ti in S355 steel are precipitated in
carbonitrides during the continuous casting process, which deteriorates the hot ductility
of the steel. The transverse corner cracks are prone to occur during the bending and
straightening process of the S355 slab. Some transverse cracks occur on the wide face and
narrow face by passing through the corners, and some are near the corner on the wide face.

In this study, the morphology and microstructure of transverse corner cracks of S355
slab are observed. The austenite and ferrite transformation temperatures of S355 steel
during heating and cooling are measured, and the causes of the cracks are analyzed. The
temperature of right-angle and chamfered slab near the corner area under weak and
intensive cooling conditions in the foot roller zone during the bending and straightening
process are investigated by numerical simulation. Combining the structure of the cracks
of the slab and morphology characteristics by the Gleeble experiment, the causes of the
transverse cracks near the corner area are analyzed. The effect of the chamfered mould
technology on the slab transverse corner cracks is clarified.

2. Materials and Methods
2.1. Experimental Materials and Methods

The chemical composition of S355 in this experiment is shown in Table 1. A 500 mm-
long specimen is cut from industrial slab with corner transverse cracks. The corner of the
slab is pickled by hydrochloric acid for observing the morphology of the corner transverse
cracks. Then, the corner specimen with a transverse crack is sectioned along the vertical
direction, smoothed on the sandpapers, polished with polishing paste, and then etched by
4% nitric acid in ethanol for observing the microstructure near the crack.

Table 1. Chemical composition of typical steel (wt%).

Steel C Si Mn S P Als N Ti Nb V

S355 0.17 0.29 1.51 0.002 0.017 0.037 0.003 0.012 0.017 0.051

The specimen for measuring the phase transition temperature is cut by wire cutting
along the width direction of the slab and processed into cylindrical samples with a diameter
of 5 mm and a length of 3 mm. Differential scanning calorimetry (DSC) is used to measure
the phase transition temperatures of the S355 steel.

Tensile tests are performed on a Gleeble 1500D thermal stress/strain simulator (DS
Inc., Poestenkill, NY, USA). The specimens are taken from an S355 slab, and are cut away
from the center. The size of the specimen is 10 mm in diameter and 110 mm in length, with
M10 threads at the two ends. The specific size is shown in Figure 1.

The schematic diagram of the tensile test process is shown in Figure 2. The temperature
range of the high-temperature tensile test is 650 ◦C to 1000 ◦C, and the high-temperature
tensile test is measured at intervals of 50 ◦C. After the specimen is broken by stretching,
it is subjected to water quenching. The specimen is smoothed with sandpaper, and then
polished with polishing paste. Finally, 4% nitric acid in ethanol is used for etching, and the
fracture structure is observed with optical microscopy.
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tracking and spraying control of the strand. In this model, it is assumed that the finite 2D 
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2.2. Numerical Simuation Methods

In this study, a numerical analysis of heat transfer and solidification in the continuous
casting of an S355 steel slab are preformed to predict the effect of the temperature profiles
near the corner area on the possible occurrence of transverse corner crack defects by using a
two-dimensional solidification model with the concept of effective heat conductivity [21–24].
Compared with the complex coupled model of fluid flow, heat transfer, and solidification
in continuous casting of steel, it is simpler for the on-line thermal tracking and spraying
control of the strand. In this model, it is assumed that the finite 2D slice of the slab being
considered moves with the strand at a velocity equal to the casting speed. The influence
of fluid turbulence and convection on heat transfer are taken into account by increasing
the thermal conductivity of steel in the liquid pool region [22–24]. Neglecting the heat
conductivity along the axial direction, in a rectangular Cartesian coordinate system, the
equation based on the concept of effective heat conductivity model in continuous casting
can be expressed as:

ρVc
∂h
∂z

=
∂

∂x

(
ke f f

∂T
∂x

)
+

∂

∂y

(
ke f f

∂T
∂y

)
+ ST (1)

where ρ is the density (kg·m−3), Vc is the casting speed (m·s−1), h is the enthalpy, ke f f is the
effective heat conductivity (W·m−1·K−1), T is the temperature (K), z is the distance away
from the meniscus (m), x, y is the slab width (m) and thickness direction (m), respectively,
and ST is the latent heat term.

ST = ρVc∆H f
∂ fs

∂z
(2)

where ∆H f is the latent heat of solidification (J·kg−1), fs is the solidus fraction, Vc = z/t
and t is the time (s).
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In the mould cooling zone, the local heat convection boundary along the height of
the mould is used, which is validated by the average heat flux through the mould walls,
calculated from the mould’s actual water flow (Qw) and the rise in temperature of the
cooling water (∆Tw):

q = ρwQwCp,w∆Tw (3)

where ρw is the density and Cp,w is the specific heat of the cooling water.
Beyond the mould zone, a convective heat transfer boundary condition depending on

the spraying water volume in every segment is imposed [24], and the overall heat transfer
coefficient is determined from the cooling water’s volume flow rate and the radiative heat
transfer by:

qs = hs(Ts − Tw) + σε(Ts
4 − T∞

4) (4)

where hs is the heat transfer coefficient, Ts is the slab surface temperature (K), σ is the Stefan
Boltzman constant and ε is the emissivity of the slab surface, Tw and T∞ are the cooling
water and the surrounding temperatures (K), respectively.

In the radiation cooling zone below sprays, the surface heat flux can be represented
via the following expression:

qs = σε(Ts
4 − T∞

4) (5)

Due to the symmetry in the square section of slab, only a quadrant of its cross-section
is considered for the numerical analysis. The symmetric boundary condition through the
center line is:

qs = 0 (6)

The above governing equations associated with the boundary conditions are solved
numerically using a finite control volume method. The initial temperature during unsteady
casting is supposed to be the incoming temperature of molten steel.

Figure 3 shows the specified geometry and non-uniform hexahedral mesh system for
the S355 slab with the transverse size of 250 mm × 1600 mm. A conventional slab caster
with right-angle mould for S355 production at the casting speed of 1.0 m/min is used as a
reference to a chamfered slab caster with a chambered angle of α = 30◦ and the chamfered
length of L = 60 mm. Two spraying cooling conditions including an intensive cooling
and a weak cooling in the foot roller are examined. The temperature evolutions of the
monitored points (labeled in Figure 3) in the slab are focused to analyze the effect of the
varying cooling conditions on the transverse corner cracks.

The characteristic temperatures at key solidification lengths are discussed. The effec-
tive cooling length in the mould is S = 0.80 m away from the meniscus. The length at the
foot roller ending is 1.5 m. The length at the beginning of bending is S = 2.52 m. The length
at the beginning of straightening is S = 17.16 m, and the length at the end of straightening
is S = 19.2 m. A schematic drawing of key characteristic positions for discussion is shown
in Figure 4. Other geometrical parameters and computational conditions of the slab caster
are given in Table 2. The thermal-physical properties of the S355 steel used in this study are
listed in Table 3.
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Table 2. Thermophysical properties of S355 steel used in the study.

Parameter Value

Density of steel(kg·m−3) 7020
Latent heat of steel (J ·kg−1) 2.72 × 105

Specific heat (J·kg−1·K−1) 711
Thermal conductivity (W·m−1·K−1) 12.5 + 0.01108 × T

Liquidus temperature (K) 1790
Solidus temperature (K) 1728

Table 3. Casting process parameters adopted in the simulation.

Parameter Value

Slab transverse section size (mm ×mm) 1600 (Length) × 250 (Thickness)

Effective mould length (m) 0.80

Initial casting temperature (K) 1815

Casting speed(m·min−1) 1.0

Spraying cooling segment lengthof slab wide face (m) 0.49, 0.87, 1.061, 1.64, 1.951, 3.906, 5.790

Spraying water flow rate of slab wide face (L·min−1) 451, 610, 211, 254,2 38, 326, 255

Spraying cooling length in the foot roller zone (m) 0.70

Spraying water flow rate for an intensive cooling in the foot roller
zone (L·min−1) 150

Spraying water flow rate for a weak cooling in the foot roller zone
(L·min−1) 72

Cooling water temperature (K) 300

Cooling water flow rate in the mould (m3·h−1) 420

Averaged water temperature rising in mould (◦C) 6.0

3. Results and Discussion
3.1. Crack Morphology of Typical Micro-Alloyed Steel S355 Slab

Figure 5 shows the morphology of the transverse corner cracks in a typical micro-
alloyed steel of a right-angle slab. Some cracks are in the corners (Figure 5a), and some
cracks are 5–15 mm away from the corners (Figure 5b). The microstructure of the area near
the crack is shown in Figure 5. It can be observed that the microstructure of the typical
micro-alloyed steel S355 slab is in the vicinity of the transverse corner cracks, which mainly
consists of two parts: the pro-eutectoid film-like ferrite generated along the grain boundary
and the acicular ferrite in the grain (see Figure 6a). The transverse corner cracks of the slab
are all formed in the middle of the ferrite film along the grain boundaries. The enlarged
crack morphology is shown in Figure 6b.

Form Figure 6, it can be deduced that the crack characteristics are as follows:
(1) the cracks are all formed in the middle of the film-like ferrite along the grain boundary,
indicating that when cracks occur, the slab corner begins to undergo γ→ α transformation,
i.e., the temperature in the corner area drops below Ar3 (i.e., the starting temperature
of austenite-to-ferrite transformation during cooling); and (2) the pre-eutectoid film-like
ferrite generated along the grain boundary caused grain boundary embrittlement, which is
the internal cause of the slab transverse corner cracks during the bending and straightening
processes. Therefore, reasonably increasing the slab corner temperature by a weak cooling
to control it above Ar3 is an effective method in avoiding the occurrence of transverse
corner cracks on the micro-alloyed steel slab.
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3.2. Phase-Transformation Temperature

Figure 7 shows the phase transformation temperatures measured by DSC differential
analyser during cooling and heating of S355. The analysis shows that Ac1 (i.e., the starting
temperature of ferrite-to-austenite transformation during heating), Ac3, Ar1, and Ar3 are
736.5 ◦C, 852.6 ◦C, 646.0 ◦C, and 797.0 ◦C, respectively.
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3.3. Tensile Test Results
3.3.1. Hot Ductility and Tensile Strength

Figure 8 shows the hot ductility(RA) and tensile strength(σb) of S355 at different
temperature tested by the Gleeble 1500D thermal stress/strain simulator. It can be seen
that the tensile strength increases with the decrease in temperature during the continuous
cooling process of the sample. The tensile strength is 49 MPa when the test temperature
is 1000 ◦C. When the temperature decreases to 650 ◦C, the tensile strength increased to
179 MPa. However, the hot ductility first decreases and then increases with the decrease in
temperature. The lowest hot ductility is only 18% at 750 ◦C, and the hot ductility trough
is in the 670 ◦C~850 ◦C temperature range of the S355. Therefore, the cracks are prone to
occur when bending or straightening in this embrittlement zone.
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Figure 8. Measured hot ductility and tensile strength of S355 steel.

3.3.2. Microstructure

The tensile fracture microstructure of the S355 slab is shown in Figure 9. It can be
observed that when the test temperature is 850 ◦C, the room-temperature structure is
mainly martensite, thereby indicating that the structure of the sample at a high temperature
is austenite. When the sample is cooled to 800 ◦C, there is a small amount of discontinuous
pre-eutectoid ferrite at the grain boundaries at room temperature, and continuous pre-
eutectoid ferrite is formed when the sample is cooled to 750 ◦C. The existence of this
continuous ferrite film results in the grain boundary embrittlement, which became the
original source of cracks. The temperature of the microstructure also corresponds to the
trough of the hot ductility of the sample. The amount of ferrite precipitation increases, the
ferrite film becomes thicker, and the ferrite begins to precipitate inside the grains at 700 ◦C.
When the test temperature is further reduced to 650 ◦C, in addition to the thick ferrite
film already formed at the grain boundaries, a large amount of ferrite is formed inside the
grains. Combined with Figure 6, it can be further proved that, in actual production, the
corner cracks occur when the slab temperature is below the Ar3.
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3.4. Simulation of Corner Temperature in Continuous Casting Slabs with Different Corner Shapes
3.4.1. Temperature Characteristics of the Right-Angle Slab Corner

Figure 10 shows the predicted temperature profiles at the monitored points (labeled in
Figure 3a) along the casting direction for the right-angle slab under an intensive cooling
condition in the foot roller zone. It can be seen that the temperature of the slab center
(CenterPoint) presents the slowest cooling and gives a final solidification core length of
about 23 m (Figure 10a). There is a rapid temperature drop on the corner (CornerPoint).
An enlarged view of the temperature distribution from the mould to the bending segment
in Figure 10b shows that even at a small distance of 5 mm away from the corner point
(Center5mmPoint)along the wide face, there is an obvious change in the temperature. The
minimum temperature values at the CornerPoint and Corner5mmPoint at the end of foot
roller (S = 1.5 m) under the intensive cooling are 575 ◦C and 646 ◦C, respectively. With
the increase in the distance from the meniscus, the temperature at the CornerPoint and
Corner5mmPoint can gradually increase.
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Figure 10. Temperature distribution under intensive cooling in foot roller zone of the right-angle slab.
(a) The whole process of slab solidification, (b) enlarged view of mould and bending section.

Table 4 lists the detailed temperature values at the distances of 0 mm, 5 mm, 15 mm,
and 25 mm along the wide face of the right-angle slab of the S355 steel at the selected
characteristic positions, including the mould exit, the end of the foot roller, the beginning of
the bending, and the beginning and end of the straitening segment. If an intensive cooling
process is adopted, the temperature at the position of 5 mm from the slab corner can be
reduced to 646 ◦C at the foot roller ending (S = 1.5 m), which is in the pure ferrite phase.
Although the temperatures can rise up to 748 ◦C, it is still below the measured temperature
of the Ac3 point (852.6 ◦C) of S355 steel. Therefore, the slab cannot obtain a pure austenite
phase; when the slab begins to bend (S = 2.52 m) at this situation, the cracks are prone to
occur during the bending process. The temperature at the position of 15 mm from the slab
corner is 785 ◦C at the foot roller ending (S = 1.5 m), which is higher than Ar1. At this time,
the microstructure is in the austenite and ferrite two-phase region, rather than pure ferrite
region. The temperature is 787 ◦C at the beginning of bending (S = 2.52 m), the film-like
ferrite phase still exists, and cracks are easy to generate during the bending process. The
temperature at the Corner25mmPoint is 844 ◦C, which is in the austenite region at the
beginning of bending.

Table 4. Temperature of right-angle slab under intensive cooling (◦C).

Right-Angle Slab CornerPoint Corner5mmPoint Corner15mmPoint Corner25mmPoint

Mould exit (S = 0.8 m) 754 859 1014 1123
Foot roller ending (S = 1.5 m) 575 646 785 902

Beginning of bending (S = 2.52 m) 734 748 787 844
Beginning of straightening (S = 17.16 m) 834 847 871 897

Ending of straightening (S = 19.2 m) 820 832 855 880

As a comparison to Figure 10, Figure 11 shows the temperature distribution on the
same monitored points of the right-angle slab under the weak cooling condition in the
foot-roller zone. The temperatures at the corner point and its nearby area are different from
those in the intensive cooling. The minimum temperature at the slab corner is 754 ◦C at the
exit of the mould and can return to 840 ◦C during the bending process (S = 2.52 m), which
is close to the temperature of Ac3 of S355 steel. However, at a distance of 5 mm from the
slab corner, the temperature is maintained above 797 ◦C of Ar3, and no ferrite film can be
formed. It is still in the hot ductility trough of S355, and the possibility of bending cracks
still exists.
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Figure 11. Temperature distribution under weak cooling in foot roller zone of the right-angle slab.
(a) The whole process of slab solidification, (b) enlarged view of mould and bending section.

As shown in Tables 4 and 5, the temperature at the beginning of straightening for the
CornerPoint and Corner5mmPoint are 834 ◦C and 842 ◦C, respectively. Both are kept above
797 ◦C for Ar3 of S355 steel, which could effectively prevent the occurrence of ferrite films
during the straightening process. However, the temperatures are still in the embrittlement
zone. Therefore, the straightening cracks cannot be avoided for the right-angle slab with an
intensive cooling or a weak cooling.

Table 5. Temperature of right-angle slab under weak cooling (◦C).

Right-Angle Slab CornerPoint Corner5mmPoint Corner15mmPoint Corner25mmPoint

Mould exit (S = 0.8 m) 754 859 1014 1123
Foot roller ending (S = 1.5 m) 796 852 957 1053

Beginning of bending (S = 2.52 m) 840 856 896 950.1
Beginning of straightening (S = 17.16 m) 842 855 879 906

Ending of straightening (S = 19.2 m) 826 839 862 887

3.4.2. Temperature Characteristics of Chamfered Slab Corners

Figures 12 and 13 show the predicted temperature profiles at the monitored points (la-
beled in Figure 3b) along the casting direction for the chamfered slab (α = 30◦, L = 60 mm)
with an intensive cooling and weak cooling in the foot roller zone, respectively. Table 6
lists the temperature values at each characteristic position of the chamfered slab. Under
the same cooling conditions, the chamfered slab corner temperature is higher than that
of the right-angle slab. At the beginning of the bending (S = 2.52 m), it is found that the
corner temperatures of the wide-face of the chamfered slab are 929 ◦C and 1016.2 ◦C for the
intensive cooling and the weak cooling, respectively, which are higher than the temperature
of Ac3 of S355 steel. This confirms that no ferrite film is formed in the slab corner area
during the bending process, and bending cracks can be avoided.

At the beginning of the straightening process (S = 17.16 m), the corner temperatures of
the wide face of the chamfered slab under the intensive and weak cooling processes are
910 ◦C and 917 ◦C, which are 76 ◦C and 75 ◦C higher than those of the right-angle slab,
respectively. The higher temperature at the corner can effectively avoid the embrittlement
zone of the slab and thus prevent the occurrence of straightening cracks. Therefore, it
can be concluded that the chamfered slab can be favorable for avoiding the occurrence
of transverse corner cracks, whether the intensive cooling or the weak cooling in the foot
roller zone are used.
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Figure 12. Temperature distribution under intensive cooling in foot roller zone of the chamfered slab.
(a) The whole process of slab solidification, (b) enlarged view of mould and bending section.
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Figure 13. Temperature distribution under weak cooling in foot roller zone of the chamfered slab.
(a) The whole process of slab solidification, (b) enlarged view of mould and bending section.
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Table 6. Comparation of temperature of chamfered slab under intensive and weak cooling (◦C).

Chamfered slab
Intensive Cooling Weak Cooling

CornerPoint Corner5mmPoint Corner15mmPoint Corner25mmPoint CornerPoint Corner5mmPoint Corner15mmPoint Corner25mmPoint

Mould exit (S = 0.8 m) 972 1015 1102 1153 972 1015 1102 1153
Foot roller ending (S = 1.5 m) 791 816 904 964 981 1001 1064 1112

Beginning of bending (S = 2.52 m) 929 891 901 926 1016 983 997 1021
Beginning of straightening (S = 17.16 m) 910 916 931 946 917 924 939 954

Ending of straightening (S = 19.2 m) 891 897 912 891 898 905 920 934
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4. Conclusions

(1) The analysis of the metallographic structure of typical micro-alloyed S355 steel
shows that the temperature of the slab corner is cooled to that between Ar3 and Ar1, such
that the ferrite film precipitates along the grain boundary, which causes the grain boundary
to become brittle, which is the main reason for the formation of transverse corner cracks of
micro-alloyed steel during the bending and straightening processes.

(2) The numerical simulation results show that the temperature of the slab corner and
its nearby area is quickly reduced to below that of Ar1 via the intensive cooling method in
the foot roller zone of the right-angle slab. The temperature is returned to the hot ductility
trough of S355 at the bending process. The right-angle slab is prone to create transverse
corner crack defects during the bending and straightening process, whether under intensive
or weak cooling conditions.

(3) Using the chamfered mould technology, during the bending and straightening
processes, the temperature of the slab corner is always maintained above that of Ar3, which
avoids harm to the grain boundary ferrite film to the hot ductility of steel. Meanwhile, the
embrittlement zone of the steel is also avoided. Transverse corner cracks of the slab can be
prevented effectively.
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