Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = mosaic hemagglutin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1249 KiB  
Article
A Randomized Controlled Study to Evaluate the Safety and Reactogenicity of a Novel rVLP-Based Plant Virus Nanoparticle Adjuvant Combined with Seasonal Trivalent Influenza Vaccine Following Single Immunization in Healthy Adults 18–50 Years of Age
by Joanne Langley, Elodie Pastural, Scott Halperin, Shelly McNeil, May ElSherif, Donna MacKinnon-Cameron, Lingyun Ye, Cécile Grange, Valérie Thibodeau, Jean-François Cailhier, Rejean Lapointe, Janet McElhaney, Luis Martin, Marilène Bolduc, Marie-Eve Laliberté-Gagné, Denis Leclerc and Pierre Savard
Vaccines 2020, 8(3), 393; https://doi.org/10.3390/vaccines8030393 - 20 Jul 2020
Cited by 11 | Viewed by 3500
Abstract
Inactivated influenza vaccines efficacy is variable and often poor. We conducted a phase 1 trial (NCT02188810), to assess the safety and immunogenicity of a novel nanoparticle Toll-like receptor 7/8 agonist adjuvant (Papaya Mosaic Virus) at different dose levels combined with trivalent influenza vaccine [...] Read more.
Inactivated influenza vaccines efficacy is variable and often poor. We conducted a phase 1 trial (NCT02188810), to assess the safety and immunogenicity of a novel nanoparticle Toll-like receptor 7/8 agonist adjuvant (Papaya Mosaic Virus) at different dose levels combined with trivalent influenza vaccine in healthy persons 18–50 years of age. Hemagglutination-inhibition assays, antibody to Influenza A virus nucleoprotein and peripheral blood mononuclear cells for measurement of interferon-gamma ELISPOT response to influenza antigens, Granzyme B and IFNγ:IL-10 ratio were measured. The most common adverse events were transient mild to severe injection site pain and no safety signals were observed. A dose-related adjuvant effect was observed. Geometric mean hemagglutination-inhibition titers increased at day 28 in most groups and waned over time, but fold-antibody responses were poor in all groups. Cell mediated immunity results were consistent with humoral responses. The Papaya Mosaic Virus adjuvant in doses of 30 to 240 µg combined with reduced influenza antigen content was safe with no signals up to 3 years after vaccination. A dose-related adjuvant effect was observed and immunogenicity results suggest that efficacy study should be conducted in influenza antigen-naïve participants. Full article
(This article belongs to the Section Influenza Virus Vaccines)
Show Figures

Figure 1

1 pages, 125 KiB  
Abstract
The Long Road to a Universal Influenza Virus Vaccine
by Peter Palese
Proceedings 2020, 50(1), 125; https://doi.org/10.3390/proceedings2020050125 - 8 Jul 2020
Viewed by 1307
Abstract
Seasonal and pandemic influenza virus infections can cause significant disease worldwide. Current vaccines only provide limited, short-lived protection, and antigenic drift/shift in the hemagglutinin (HA) surface glycoprotein necessitates their annual reformulation and re-administration. To overcome these limitations, universal influenza virus vaccine strategies aim [...] Read more.
Seasonal and pandemic influenza virus infections can cause significant disease worldwide. Current vaccines only provide limited, short-lived protection, and antigenic drift/shift in the hemagglutinin (HA) surface glycoprotein necessitates their annual reformulation and re-administration. To overcome these limitations, universal influenza virus vaccine strategies aim at eliciting broadly protective antibodies to conserved epitopes of the HA. We have developed two approaches. (1) The first is based on “chimeric” HA constructs that retain the conserved stalk domain of the HA and have exotic HA heads. Vaccination and boosting with such constructs successfully redirects the immune system in animals and in humans towards the conserved immune sub-dominant domains of the HA stalks; this results in an antigenic silencing of the HA heads and a protective immune response facilitated by the conserved HA stalks. In mice and ferrets, such a strategy protects the animals against homo-subtypic and hetero-subtypic challenge with influenza A strains as well as against influenza B variants. It is hoped that vaccine constructs expressing three components (i.e., conserved group 1 HA stalks, conserved group 2 HA stalks, and conserved influenza B HA stalks) will be protective against all future seasonal and pandemic strains. (2) The “mosaic” HA approach is based on antigenic silencing of the major immunodominant antigenic sites of the HA heads by only replacing those epitopes with corresponding sequences of exotic avian HAs, yielding “mosaic” HAs. In mice, a prime-boost vaccination regime with inactivated viruses expressing “mosaic” HAs elicited highly cross-reactive antibodies against the stalk domain of the HAs that were capable of eliciting Fc-mediated effector functions in vitro. Extensive trials will be necessary in the future in order to identify the optimal vaccination regime (“chimeric” HA-based versus “mosaic” HA-based) in humans. Full article
(This article belongs to the Proceedings of Viruses 2020—Novel Concepts in Virology)
Back to TopTop