Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = morphogenetic furrow

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 15566 KB  
Article
Cell Cycle Regulation by NF-YC in Drosophila Eye Imaginal Disc: Implications for Synchronization in the Non-Proliferative Region
by Anthony Avellino, Chen-Huan Peng and Ming-Der Lin
Int. J. Mol. Sci. 2023, 24(15), 12203; https://doi.org/10.3390/ijms241512203 - 30 Jul 2023
Cited by 2 | Viewed by 2486
Abstract
Cell cycle progression during development is meticulously coordinated with differentiation. This is particularly evident in the Drosophila 3rd instar eye imaginal disc, where the cell cycle is synchronized and arrests at the G1 phase in the non-proliferative region (NPR), setting the stage for [...] Read more.
Cell cycle progression during development is meticulously coordinated with differentiation. This is particularly evident in the Drosophila 3rd instar eye imaginal disc, where the cell cycle is synchronized and arrests at the G1 phase in the non-proliferative region (NPR), setting the stage for photoreceptor cell differentiation. Here, we identify the transcription factor Nuclear Factor-YC (NF-YC) as a crucial player in this finely tuned progression, elucidating its specific role in the synchronized movement of the morphogenetic furrow. Depletion of NF-YC leads to extended expression of Cyclin A (CycA) and Cyclin B (CycB) from the FMW to the NPR. Notably, NF-YC knockdown resulted in decreased expression of Eyes absent (Eya) but did not affect Decapentaplegic (Dpp) and Hedgehog (Hh). Our findings highlight the role of NF-YC in restricting the expression of CycA and CycB in the NPR, thereby facilitating cell-cycle synchronization. Moreover, we identify the transcriptional cofactor Eya as a downstream target of NF-YC, revealing a new regulatory pathway in Drosophila eye development. This study expands our understanding of NF-YC’s role from cell cycle control to encompass developmental processes. Full article
(This article belongs to the Special Issue Molecular Genetics of Drosophila Development)
Show Figures

Figure 1

21 pages, 2613 KB  
Article
Deep Tillage Strategies in Perennial Crop Installation: Structural Changes in Contrasting Soil Classes
by Raphael Passaglia Azevedo, Lara Mota Corinto, Devison Souza Peixoto, Tomás De Figueiredo, Gustavo Cesar Dias Silveira, Pedro Maranha Peche, Leila Aparecida Salles Pio, Paulo Humberto Pagliari, Nilton Curi and Bruno Montoani Silva
Plants 2022, 11(17), 2255; https://doi.org/10.3390/plants11172255 - 30 Aug 2022
Cited by 6 | Viewed by 2971
Abstract
Tillage modifies soil structure, which can be demonstrated by changes in the soil’s physical properties, such as penetration resistance (PR) and soil electrical resistivity (ρ). The aim of this study was to evaluate the effect of deep tillage strategies on three [...] Read more.
Tillage modifies soil structure, which can be demonstrated by changes in the soil’s physical properties, such as penetration resistance (PR) and soil electrical resistivity (ρ). The aim of this study was to evaluate the effect of deep tillage strategies on three morphogenetically contrasting soil classes in the establishment of perennial crops regarding geophysical and physical-hydric properties. The experiment was conducted in the state of Minas Gerais, southeastern Brazil. The tillage practices were evaluated in Typic Dystrustept, Rhodic Hapludult, and Rhodic Hapludox soil classes, and are described as follows: MT—plant hole; CT—furrow; SB—subsoiler; DT—rotary hoe tiller; and DT + calcium (Ca) (additional liming). Analyses of PR and electrical resistivity tomography (ERT) were performed during the growing season and measurements were measured in plant rows of each experimental plot. Undisturbed soil samples were collected for analysis of soil bulk density (Bd) at three soil depths (0–0.20, 0.20–0.40, and 0.40–0.60 m) with morphological evaluation of soil structure (VESS). Tukey’s test (p < 0.05) for Bd and VESS and Pearson linear correlation analysis between Bd, ρ, and PR were performed. Soil class and its intrinsic attributes have an influence on the effect of tillage. The greatest effect on soil structure occurred in the treatments DT and DT + Ca that mixed the soil to a depth of 0.60 m. The ρ showed a positive correlation with Bd and with PR, highlighting that ERT may detect changes caused by cultivation practices, although ERT lacks the accuracy of PR. The soil response to different tillage systems and their effects on soil structure were found to be dependent on the soil class. Full article
Show Figures

Figure 1

Back to TopTop