Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = montmorillonite/titania composite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 13856 KiB  
Article
Clay Minerals/TiO2 Composites—Characterization and Application in Photocatalytic Degradation of Water Pollutants
by Bogna D. Napruszewska, Dorota Duraczyńska, Joanna Kryściak-Czerwenka, Paweł Nowak and Ewa M. Serwicka
Molecules 2024, 29(20), 4852; https://doi.org/10.3390/molecules29204852 - 13 Oct 2024
Cited by 3 | Viewed by 1254
Abstract
TiO2 used for photocatalytic water purification is most active in the form of nanoparticles (NP), but their use is fraught with difficulties in separation from solution or/and a tendency to agglomerate. The novel materials designed in this work circumvent these problems by [...] Read more.
TiO2 used for photocatalytic water purification is most active in the form of nanoparticles (NP), but their use is fraught with difficulties in separation from solution or/and a tendency to agglomerate. The novel materials designed in this work circumvent these problems by immobilizing TiO2 NPs on the surface of exfoliated clay minerals. A series of TiO2/clay mineral composites were obtained using five different clay components: the Na-, CTA-, or H-form of montmorillonite (Mt) and Na- or CTA-form of laponite (Lap). The TiO2 component was prepared using the inverse microemulsion method. The composites were characterized with X-ray diffraction, scanning/transmission electron microscopy/energy dispersive X-ray spectroscopy, FTIR spectroscopy, thermal analysis, and N2 adsorption–desorption isotherms. It was shown that upon composite synthesis, the Mt interlayer became filled by a mixture of CTA+ and hydronium ions, regardless of the nature of the parent clay, while the structure of Lap underwent partial destruction. The composites displayed high specific surface area and uniform mesoporosity determined by the size of the TiO2 nanoparticles. The best textural parameters were shown by composites containing clay components whose structure was partially destroyed; for instance, Ti/CTA-Lap had a specific surface area of 420 m2g−1 and a pore volume of 0.653 cm3g−1. The materials were tested in the photodegradation of methyl orange and humic acid upon UV irradiation. The photocatalytic activity could be correlated with the development of textural properties. In both reactions, the performance of the most photoactive composites surpassed that of the reference commercial P25 titania. Full article
Show Figures

Figure 1

16 pages, 4927 KiB  
Article
Composites of Montmorillonite and Titania Nanoparticles Prepared by Inverse Microemulsion Method: Physico-Chemical Characterization
by Alicja Michalik, Bogna D. Napruszewska, Dorota Duraczyńska, Anna Walczyk and Ewa M. Serwicka
Nanomaterials 2023, 13(4), 686; https://doi.org/10.3390/nano13040686 - 10 Feb 2023
Cited by 2 | Viewed by 1886
Abstract
TiO2/montmorillonite composites were synthesized using inverse micellar route for the preparation of titania nanoparticles (4–6 nm diameter) in 1-hexanol and for the dispersion of one of the clay components. Two series of composites were obtained: one derived from cetyltrimethylammonium organomontmorillonite (CTA-Mt), [...] Read more.
TiO2/montmorillonite composites were synthesized using inverse micellar route for the preparation of titania nanoparticles (4–6 nm diameter) in 1-hexanol and for the dispersion of one of the clay components. Two series of composites were obtained: one derived from cetyltrimethylammonium organomontmorillonite (CTA-Mt), exfoliated in 1-hexanol, and the other from sodium form of montmorillonite (Na-Mt) dispersed by formation of an inverse microemulsion in 1-hexanol. The TiO2 content ranged from 16 to 64 wt.%. The composites were characterized with X-ray diffraction, scanning/transmission electron microscopy/energy dispersive X-ray spectroscopy, thermal analysis, and N2 adsorption-desorption isotherms. The Na-Mt-derived component was shown to undergo transformation to CTA-Mt, as indicated by basal spacing of 17.5 nm, due to the interaction with the CTABr surfactant in inverse microemulsion. It was also better dispersed and intermixed with TiO2 nanoparticles. As a result, the TiO2/Na-Mt series displayed superior textural properties, with specific surface area up to 256 m2g−1 and pore volume up to 0.247 cm3g−1 compared with 208 m2g−1 and 0.231 cm3g−1, respectively, for the TiO2/CTA-Mt counterpart. Members of both series were uniformly mesoporous, with the dominant pore size around 5 nm, i.e., comparable with the dimensions of titania nanoparticles. The advantage of the adopted synthesis method is discussed in the context of other preparative procedures used for manufacturing of titania-clay composites. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

16 pages, 3100 KiB  
Article
Novel Montmorillonite/TiO2/MnAl-Mixed Oxide Composites Prepared from Inverse Microemulsions as Combustion Catalysts
by Bogna D. Napruszewska, Alicja Michalik-Zym, Melania Rogowska, Elżbieta Bielańska, Wojciech Rojek, Adam Gaweł, Monika Wójcik-Bania, Krzysztof Bahranowski and Ewa M. Serwicka
Materials 2017, 10(11), 1326; https://doi.org/10.3390/ma10111326 - 19 Nov 2017
Cited by 10 | Viewed by 4703
Abstract
A novel design of combustion catalysts is proposed, in which clay/TiO2/MnAl-mixed oxide composites are formed by intermixing exfoliated organo-montmorillonite with oxide precursors (hydrotalcite-like in the case of Mn-Al oxide) obtained by an inverse microemulsion method. In order to assess the catalysts’ [...] Read more.
A novel design of combustion catalysts is proposed, in which clay/TiO2/MnAl-mixed oxide composites are formed by intermixing exfoliated organo-montmorillonite with oxide precursors (hydrotalcite-like in the case of Mn-Al oxide) obtained by an inverse microemulsion method. In order to assess the catalysts’ thermal stability, two calcination temperatures were employed: 450 and 600 °C. The composites were characterized with XRF (X-ray fluorescence), XRD (X-ray diffraction), HR SEM (high resolution scanning electron microscopy, N2 adsorption/desorption at −196 °C, and H2 TPR (temperature programmed reduction). Profound differences in structural, textural and redox properties of the materials were observed, depending on the presence of the TiO2 component, the type of neutralization agent used in the titania nanoparticles preparation (NaOH or NH3 (aq)), and the temperature of calcination. Catalytic tests of toluene combustion revealed that the clay/TiO2/MnAl-mixed oxide composites prepared with the use of ammonia showed excellent activity, the composites obtained from MnAl hydrotalcite nanoparticles trapped between the organoclay layers were less active, but displayed spectacular thermal stability, while the clay/TiO2/MnAl-mixed oxide materials obtained with the aid of NaOH were least active. The observed patterns of catalytic activity bear a direct relation to the materials’ composition and their structural, textural, and redox properties. Full article
Show Figures

Figure 1

Back to TopTop