Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = monoamine oxidase A (MAO-A) blockade

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2618 KiB  
Article
An Ex Vivo 3D Tumor Microenvironment-Mimicry Culture to Study TAM Modulation of Cancer Immunotherapy
by Yan-Ruide Li, Yanqi Yu, Adam Kramer, Ryan Hon, Matthew Wilson, James Brown and Lili Yang
Cells 2022, 11(9), 1583; https://doi.org/10.3390/cells11091583 - 8 May 2022
Cited by 17 | Viewed by 5513
Abstract
Tumor-associated macrophages (TAMs) accumulate in the solid tumor microenvironment (TME) and have been shown to promote tumor growth and dampen antitumor immune responses. TAM-mediated suppression of T-cell antitumor reactivity is considered to be a major obstacle for many immunotherapies, including immune checkpoint blockade [...] Read more.
Tumor-associated macrophages (TAMs) accumulate in the solid tumor microenvironment (TME) and have been shown to promote tumor growth and dampen antitumor immune responses. TAM-mediated suppression of T-cell antitumor reactivity is considered to be a major obstacle for many immunotherapies, including immune checkpoint blockade and adoptive T/CAR-T-cell therapies. An ex vivo culture system closely mimicking the TME can greatly facilitate the study of cancer immunotherapies. Here, we report the development of a 3D TME-mimicry culture that is comprised of the three major components of a human TME, including human tumor cells, TAMs, and tumor antigen-specific T cells. This TME-mimicry culture can readout the TAM-mediated suppression of T-cell antitumor reactivity, and therefore can be used to study TAM modulation of T-cell-based cancer immunotherapy. As a proof-of-principle, the studies of a PD-1/PD-L1 blockade therapy and a MAO-A blockade therapy were performed and validated. Full article
(This article belongs to the Special Issue Cell-Based Models of Diseases for Drug Discovery)
Show Figures

Figure 1

Back to TopTop