Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = modular milling cutters

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 6229 KiB  
Article
Experimental Study of Wear Resistance Improvement of Modular Disk Milling Cutter by Preliminary Pre-Processing Method
by Karibek Sherov, Almat Sagitov, Gulim Tusupbekova, Aibek Sherov, Gulnara Kokayeva, Dinara Kossatbekova, Gulnur Abdugaliyeva and Nurgul Karsakova
Designs 2025, 9(2), 30; https://doi.org/10.3390/designs9020030 - 5 Mar 2025
Viewed by 844
Abstract
The problem of increasing the tool durability (service life) when machining hard-to-machine materials is one of the major practical problems of modern mechanical engineering. This paper aims to improve the wear resistance of modular disk mills using the pre-processing method. Second-order rotatable planning [...] Read more.
The problem of increasing the tool durability (service life) when machining hard-to-machine materials is one of the major practical problems of modern mechanical engineering. This paper aims to improve the wear resistance of modular disk mills using the pre-processing method. Second-order rotatable planning was applied for the experimental study of the pre-processing of modular disk mills. Experimental research on the pre-processing of modular disk mills was carried out on a vertical milling machine XH950A when milling a workpiece made of steel 45. It was revealed that the increase in pre-processing modes up to specific values (f = 60 mm/min; vc = 17 m/min; t = 6 min) on the tool durability period has a positive effect. At the same time, the tool durability period was increased up to T = 155 min. Tests of the machined modular disk mills were carried out in the conditions of the laboratory base to determine the durability period. After pre-processing at different modes, each modular disk mill was used to machine the workpiece until wear signs appeared on the cutting edge. At the same time, the time was recorded to determine the durability period. It was found that the optimum mode of tool preliminary pre-processing provides the best deformation and thermal conditions for hardening the tool cutting part. As a result of modeling with the ANSYS 2024 R1 program, it was found that a hardened layer is indeed formed on the cutting part of the modular disk mill after pre-processing. The results obtained show the possibility of using the preliminary pre-processing method to improve the wear resistance of other metal-cutting tools. Full article
(This article belongs to the Section Mechanical Engineering Design)
Show Figures

Figure 1

14 pages, 6571 KiB  
Article
A Fully Symmetrical High Performance Modular Milling Cutter
by Mircea-Viorel Dragoi, Dorin Mircea Rosca, Milena Flavia Folea and Gheorghe Oancea
Symmetry 2021, 13(3), 496; https://doi.org/10.3390/sym13030496 - 18 Mar 2021
Cited by 4 | Viewed by 3763
Abstract
Milling cutters belong to a widely used category of cutting tools. In this category, modular milling cutters are a narrow niche, less studied, and developed. Usually, they are symmetrical cutting tools. A milling cutting tool that can be reconfigured due to its modularity [...] Read more.
Milling cutters belong to a widely used category of cutting tools. In this category, modular milling cutters are a narrow niche, less studied, and developed. Usually, they are symmetrical cutting tools. A milling cutting tool that can be reconfigured due to its modularity and still keeps its symmetry becomes more interesting and useful for machining. The paper presents such a new concept in a computer aided design (CAD) model of a cutting tool based on some novel features. The tool itself is designed as a modular complex. The way the torque is transmitted from the shaft to the elementary cutters is an original one, as they are joined together based on a profiled assembling. The profile is one formed of filleted circular sectors and segments. The reaming of the elementary cutters has two sections each of them assuming a task: transmitting the torque, and precisely centring, respectively. The cooling system, which is a component of the tool, provides the cutting area with coolant both on the front and side face of the cutting tool. Some nozzles placed around the cutting tool send jets or curtains of coolant towards the side surface of the cutter, instead of parallel, as some existing solutions do. The source of the coolant supply is the inner cooling system of the machine tool. This provides the tool with coolant having proper features: high enough flow and pressure. The output of the research is a CAD-based model of the modular milling cutter with a high performance cooling system. All of this model’s elements were designed taking into account the design for manufacturing principles, so it will be possible to easily manufacture this tool. Several variants of milling cutters obtained by reconfiguring the complex tool are presented. Even if the tool is usually a symmetric complex, it can process asymmetric parts. Symmetry is intensively used to add some advantages to the modular cutting tool: balanced forces in the cutting process, the possibility of controlling the direction of the axial cutting force, and a good machinability of the grooves used to assemble the main parts of the cutting tool. Full article
Show Figures

Figure 1

Back to TopTop