Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = modified artificial neural network (MANN)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 3683 KiB  
Article
Prediction of Urinary Tract Infection in IoT-Fog Environment for Smart Toilets Using Modified Attention-Based ANN and Machine Learning Algorithms
by Abdullah Alqahtani, Shtwai Alsubai, Adel Binbusayyis, Mohemmed Sha, Abdu Gumaei and Yu-Dong Zhang
Appl. Sci. 2023, 13(10), 5860; https://doi.org/10.3390/app13105860 - 9 May 2023
Cited by 5 | Viewed by 3302
Abstract
UTI (Urinary Tract Infection) has become common with maximum error rates in diagnosis. With the current progress on DM (Data Mining) based algorithms, several research projects have tried such algorithms due to their ability in making optimal decisions and efficacy in resolving complex [...] Read more.
UTI (Urinary Tract Infection) has become common with maximum error rates in diagnosis. With the current progress on DM (Data Mining) based algorithms, several research projects have tried such algorithms due to their ability in making optimal decisions and efficacy in resolving complex issues. However, conventional research has failed to attain accurate predictions due to improper feature selection. To resolve such existing pitfalls, this research intends to employ suitable ML (Machine Learning)-based algorithms for predicting UTI in IoT-Fog environments, which will be applicable to a smart toilet. Additionally, bio-inspired algorithms have gained significant attention in recent eras due to their capability in resolving complex optimization issues. Considering this, the current study proposes MFB-FA (Modified Flashing Behaviour-based Firefly Algorithm) for feature selection. This research initializes the FF (Firefly) population and interchanges the constant absorption coefficient value with the chaotic maps as the chaos possesses an innate ability to evade getting trapped in local optima with the improvement in determining global optimum. Further, GM (Gaussian Map) is taken into account for moving all the FFs to a global optimum in an individual iteration. Due to such nature, this algorithm possesses a better optimization ability than other swarm intelligence approaches. Finally, classification is undertaken by the proposed MANN-AM (Modified Artificial Neural Network with Attention Mechanism). The main intention for proposing this network involves its ability to focus on small and significant data. Moreover, ANNs possess the ability for learning and modelling complex and non-linear relationships, in which the present study considers it. The proposed method is compared internally by using Random Forest, Naive Bayes and K-Nearest Neighbour to show the efficacy of the proposed model. The overall performance of this study is assessed with regard to standard performance metrics for confirming its optimal performance in UTI prediction. The proposed model has attained optimal values such as accuracy as 0.99, recall as 0.99, sensitivity as 1, precision as 1, specificity as 0.99 and f1-score as 0.99. Full article
(This article belongs to the Special Issue Medical Big Data and Artificial Intelligence for Healthcare)
Show Figures

Figure 1

15 pages, 4836 KiB  
Article
How Climate Change Affects River and Lake Water Temperature in Central-West Poland—A Case Study of the Warta River Catchment
by Joanna Gizińska and Mariusz Sojka
Atmosphere 2023, 14(2), 330; https://doi.org/10.3390/atmos14020330 - 7 Feb 2023
Cited by 22 | Viewed by 4764
Abstract
Climate change has a significant impact on the abiotic and biotic environment. An increase in air temperatures translates into higher temperatures of water constituting the habitat of a wide range of species. The purpose of this study is to present the direction and [...] Read more.
Climate change has a significant impact on the abiotic and biotic environment. An increase in air temperatures translates into higher temperatures of water constituting the habitat of a wide range of species. The purpose of this study is to present the direction and extent of water temperature increases in eight rivers and three lakes on a monthly and annual basis. The analysis of river water temperatures used both measured data and data reconstructed using artificial neural networks from the period of 1984–2020. The analysis of the direction and extent of changes in air and water temperatures was performed using Mann-Kandall tests and a modified Sen test. The analysis of water temperature changes was conducted against the background of climatic conditions and catchment characteristics. The results indicate that in the Warta River basin in the period of 1984–2020, the average annual temperature rise reached 0.51 °C decade−1, ranging from 0.43 to 0.61 °C decade−1. This translated into an increase in mean annual water temperatures in lakes in a range from 0.14 to 0.58 °C decade−1, and for rivers in a range from 0.10 to 0.54 °C decade−1. The greatest changes in air temperature occurred in April, June, August, September, and November. It was reflected in an increase in water temperature in lakes and rivers. However, these changes did not occur in all rivers and lakes, suggesting the role of local factors that modify the effect of climate change. The study showed that the extent of air temperature changes was significantly higher than the extent of water temperature changes in rivers. Full article
(This article belongs to the Special Issue Water Management and Crop Production in the Face of Climate Change)
Show Figures

Figure 1

28 pages, 2865 KiB  
Article
Predicting VO2max in Children and Adolescents Aged between 6 and 17 Using Physiological Characteristics and Participation in Sport Activities: A Cross-Sectional Study Comparing Different Regression Models Stratified by Gender
by Vilelmine Carayanni, Gregory C. Bogdanis, Elpis Vlachopapadopoulou, Dimitra Koutsouki, Yannis Manios, Feneli Karachaliou, Theodora Psaltopoulou and Stefanos Michalacos
Children 2022, 9(12), 1935; https://doi.org/10.3390/children9121935 - 9 Dec 2022
Cited by 5 | Viewed by 5118
Abstract
Background: The aim of this study is to use different regression models to capture the association between cardiorespiratory fitness VO2max (measured in mL/kg/min) and somatometric characteristics and sports activities and making better predictions. Methods: multiple linear regression (MLR), quantile regression (QR), [...] Read more.
Background: The aim of this study is to use different regression models to capture the association between cardiorespiratory fitness VO2max (measured in mL/kg/min) and somatometric characteristics and sports activities and making better predictions. Methods: multiple linear regression (MLR), quantile regression (QR), ridge regression (RR), support vector regression (SVR) with three different kernels, artificial neural networks (ANNs), and boosted regression trees (RTs) were compared to explain and predict VO2max and to choose the best performance model. The sample consisted of 4908 children (2314 males and 2594 females) aged between 6 and 17. Cardiorespiratory fitness was assessed by the 20 m maximal multistage shuttle run test and maximal oxygen uptake (VO2max) was calculated. Welch t-tests, Mann–Whitney-U tests, X2 tests, and ANOVA tests were performed. The performance measures were root mean square error (RMSE), mean absolute error (MAE), and coefficient of determination (R2). All analyses were stratified by gender. Results: A comparison of the statistical indices for both the predicted and actual data indicated that in boys, the MLR model outperformed all other models in all indices, followed by the linear SVR model. In girls, the MLR model performed better than the other models in R2 but was outperformed by SVR-RBF in terms of RMSE and MAE. The overweight and obesity categories in both sexes (p < 0.001) and maternal prepregnancy obesity in girls had a significant negative effect on VO2max. Age, weekly football training, track and field, basketball, and swimming had different positive effects based on gender. Conclusion: The MLR model showed remarkable performance against all other models and was competitive with the SVR models. In addition, this study’s data showed that changes in cardiorespiratory fitness were dependent, to a different extent based on gender, on BMI category, weight, height, age, and participation in some organized sports activities. Predictors that are not considered modifiable, such as gender, can be used to guide targeted interventions and policies. Full article
(This article belongs to the Special Issue Physical Activity and Nutrition Research)
Show Figures

Figure 1

15 pages, 5627 KiB  
Article
Precipitation Trends in the Ganges-Brahmaputra-Meghna River Basin, South Asia: Inconsistency in Satellite-Based Products
by Muna Khatiwada and Scott Curtis
Atmosphere 2021, 12(9), 1155; https://doi.org/10.3390/atmos12091155 - 8 Sep 2021
Cited by 3 | Viewed by 4324
Abstract
The Ganges-Brahmaputra-Meghna (GBM) river basin is the world’s third largest. Literature show that changes in precipitation have a significant impact on climate, agriculture, and the environment in the GBM. Two satellite-based precipitation products, Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate [...] Read more.
The Ganges-Brahmaputra-Meghna (GBM) river basin is the world’s third largest. Literature show that changes in precipitation have a significant impact on climate, agriculture, and the environment in the GBM. Two satellite-based precipitation products, Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR) and Multi-Source Weighted-Ensemble Precipitation (MSWEP), were used to analyze and compare precipitation trends over the GBM as a whole and within 34 pre-defined hydrological sub-basins separately for the period 1983–2019. A non-parametric Modified Mann-Kendall test was applied to determine significant trends in monsoon (June–September) and pre-monsoon (March–May) precipitation. The results show an inconsistency between the two precipitation products. Namely, the MSWEP pre-monsoon precipitation trend has significantly increased (Z-value = 2.236, p = 0.025), and the PERSIANN-CDR monsoon precipitation trend has significantly decreased (Z-value = −33.071, p < 0.000). However, both products strongly indicate that precipitation has recently declined in the pre-monsoon and monsoon seasons in the eastern and southern regions of the GBM river basin, agreeing with several previous studies. Further work is needed to identify the reasons behind inconsistent decreasing and increasing precipitation trends in the GBM river basin. Full article
(This article belongs to the Special Issue Asian Summer Monsoon Variability, Teleconnections and Projections)
Show Figures

Figure 1

21 pages, 2639 KiB  
Article
Evaluation and Comparison of Satellite-Derived Estimates of Rainfall in the Diverse Climate and Terrain of Central and Northeastern Ethiopia
by Girma Berhe Adane, Birtukan Abebe Hirpa, Chul-Hee Lim and Woo-Kyun Lee
Remote Sens. 2021, 13(7), 1275; https://doi.org/10.3390/rs13071275 - 26 Mar 2021
Cited by 18 | Viewed by 3268
Abstract
Understanding rainfall processes as the main driver of the hydrological cycle is important for formulating future water management strategies; however, rainfall data availability is challenging for countries such as Ethiopia. This study aims to evaluate and compare the satellite rainfall estimates (SREs) derived [...] Read more.
Understanding rainfall processes as the main driver of the hydrological cycle is important for formulating future water management strategies; however, rainfall data availability is challenging for countries such as Ethiopia. This study aims to evaluate and compare the satellite rainfall estimates (SREs) derived from tropical rainfall measuring mission (TRMM 3B43v7), rainfall estimation from remotely sensed information using artificial neural networks—climate data record (PERSIANN-CDR), merged satellite-gauge rainfall estimate (IMERG), and the Global Satellite Mapping of Precipitation (GSMaP) with ground-observed data over the varied terrain of hydrologically diverse central and northeastern parts of Ethiopia—Awash River Basin (ARB). Areal comparisons were made between SREs and observed rainfall using various categorical indices and statistical evaluation criteria, and a non-parametric Mann–Kendall (MK) trend test was analyzed. The monthly weighted observed rainfall exhibited relatively comparable results with SREs, except for the annual peak rainfall shifts noted in all SREs. The PERSIANN-CDR products showed a decreasing trend in rainfall at elevations greater than 2250 m above sea level in a river basin. This demonstrates that elevation and rainfall regimes may affect satellite rainfall data. On the basis of modified Kling–Gupta Efficiency, the SREs from IMERG v06, TRMM 3B43v7, and PERSIANN-CDR performed well in descending order over the ARB. However, GSMaP showed poor performance except in the upland sub-basin. A high frequency of bias, which led to an overestimation of SREs, was exhibited in TRMM 3B43v7 and PERSIANN-CDR products in the eastern and lower basins. Furthermore, the MK test results of SREs showed that none of the sub-basins exhibited a monotonic trend at 5% significance level except the GSMap rainfall in the upland sub-basin. In ARB, except for the GSMaP, all SREs can be used as alternative options for rainfall frequency-, flood-, and drought-monitoring studies. However, some may require bias corrections to improve the data quality. Full article
Show Figures

Graphical abstract

13 pages, 827 KiB  
Article
Privacy Preservation in Edge Consumer Electronics by Combining Anomaly Detection with Dynamic Attribute-Based Re-Encryption
by Eunmok Yang, Velmurugan Subbiah Parvathy, P. Pandi Selvi, K. Shankar, Changho Seo, Gyanendra Prasad Joshi and Okyeon Yi
Mathematics 2020, 8(11), 1871; https://doi.org/10.3390/math8111871 - 29 Oct 2020
Cited by 9 | Viewed by 2943
Abstract
The expanding utilization of edge consumer electronic (ECE) components and other innovations allows medical devices to communicate with one another to distribute sensitive clinical information. This information is used by health care authorities, specialists and emergency clinics to offer enhanced medication and help. [...] Read more.
The expanding utilization of edge consumer electronic (ECE) components and other innovations allows medical devices to communicate with one another to distribute sensitive clinical information. This information is used by health care authorities, specialists and emergency clinics to offer enhanced medication and help. The security of client data is a major concern, since modification of data by hackers can be life-threatening. Therefore, we have developed a privacy preservation approach to protect the wearable sensor data gathered from wearable medical devices by means of an anomaly detection strategy using artificial intelligence combined with a novel dynamic attribute-based re-encryption (DABRE) method. Anomaly detection is accomplished through a modified artificial neural network (MANN) based on a gray wolf optimization (GWO) technique, where the training speed and classification accuracy are improved. Once the anomaly data are removed, the data are stored in the cloud, secured through the proposed DABRE approach for future use by doctors. Furthermore, in the proposed DABRE method, the biometric attributes, chosen dynamically, are considered for encryption. Moreover, if the user wishes, the data can be modified to be unrecoverable by re-encryption with the true attributes in the cloud. A detailed experimental analysis takes place to verify the superior performance of the proposed method. From the experimental results, it is evident that the proposed GWO–MANN model attained a maximum average detection rate (DR) of 95.818% and an accuracy of 95.092%. In addition, the DABRE method required a minimum average encryption time of 95.63 s and a decryption time of 108.7 s, respectively. Full article
Show Figures

Figure 1

Back to TopTop