Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = mobile phone biosensor app

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3883 KiB  
Article
Smartphone Biosensors for Non-Invasive Drug Monitoring in Saliva
by Atheer Awad, Lucía Rodríguez-Pombo, Paula Esteiro Simón, André Campos Álvarez, Carmen Alvarez-Lorenzo, Abdul W. Basit and Alvaro Goyanes
Biosensors 2025, 15(3), 163; https://doi.org/10.3390/bios15030163 - 4 Mar 2025
Viewed by 1906
Abstract
In recent years, biosensors have emerged as a promising solution for therapeutic drug monitoring (TDM), offering automated systems for rapid chemical analyses with minimal pre-treatment requirements. The use of saliva as a biological sample matrix offers distinct advantages, including non-invasiveness, cost-effectiveness, and reduced [...] Read more.
In recent years, biosensors have emerged as a promising solution for therapeutic drug monitoring (TDM), offering automated systems for rapid chemical analyses with minimal pre-treatment requirements. The use of saliva as a biological sample matrix offers distinct advantages, including non-invasiveness, cost-effectiveness, and reduced susceptibility to fluid intake fluctuations compared to alternative methods. The aim of this study was to explore and compare two types of low-cost biosensors, namely, the colourimetric and electrochemical methodologies, for quantifying paracetamol (acetaminophen) concentrations within artificial saliva using the MediMeter app, which has been specifically developed for this application. The research encompassed extensive optimisations and methodological refinements to ensure the results were robust and reliable. Material selection and parameter adjustments minimised external interferences, enhancing measurement accuracy. Both the colourimetric and electrochemical methods successfully determined paracetamol concentrations within the therapeutic range of 0.01–0.05 mg/mL (R2 = 0.939 for colourimetric and R2 = 0.988 for electrochemical). While both techniques offered different advantages, the electrochemical approach showed better precision (i.e., standard deviation of response = 0.1041 mg/mL) and speed (i.e., ~1 min). These findings highlight the potential use of biosensors in drug concentration determination, with the choice of technology dependent on specific application requirements. The development of an affordable, non-invasive and rapid biosensing system holds promise for remote drug concentration monitoring, reducing the need for invasive approaches and hospital visits. Future research could extend these methodologies to practical clinical applications, encouraging the use of TDM for enhanced precision, accessibility, and real-time patient-centric care. Full article
(This article belongs to the Section Biosensors and Healthcare)
Show Figures

Graphical abstract

Back to TopTop