Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = mixture of aviation kerosene and biofuel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4098 KiB  
Article
Effects of FAME Biofuel and Jet A-1 Aviation Kerosene Blends on the Operating Characteristics of Aircraft Jet Engines
by Marián Hocko, Samer Al-Rabeei and Martina Koščáková
Appl. Sci. 2023, 13(2), 971; https://doi.org/10.3390/app13020971 - 11 Jan 2023
Cited by 7 | Viewed by 3178
Abstract
The article investigates the possibilities for the miscibility and practical use of different concentrations of biofuel rapeseed fatty acid methyl ester (FAME) with aviation kerosene Jet A-1 (or aviation kerosene PL-7 used in the Air Force of the Slovak Republic) in aircraft jet [...] Read more.
The article investigates the possibilities for the miscibility and practical use of different concentrations of biofuel rapeseed fatty acid methyl ester (FAME) with aviation kerosene Jet A-1 (or aviation kerosene PL-7 used in the Air Force of the Slovak Republic) in aircraft jet engines. The main objective of this research was the experimental verification of the technical possibilities of reliable operation of the experimental engine SJE-20 in a special laboratory of small jet engines using different concentrations of the mixture of aviation kerosene Jet A-1 and biofuel FAME and their influence on the selected operating parameters of the experimental engine. The motivation for this research is the desire to replace conventional aviation fuels with fuels that can be obtained from renewable sources. Investigation of the possibilities of powering the experimental SJE-20 engine with a mixture of traditional aviation kerosene Jet A-1 (PL-7) and rapeseed fatty acid methyl ester FAME was the subject of the internal project BIOFUEL (Biofuel for Aviation). Full article
Show Figures

Figure 1

19 pages, 5019 KiB  
Article
Pulse Detonation Assessment for Alternative Fuels
by Muhammad Hanafi Azami and Mark Savill
Energies 2017, 10(3), 369; https://doi.org/10.3390/en10030369 - 15 Mar 2017
Cited by 13 | Viewed by 7814
Abstract
The higher thermodynamic efficiency inherent in a detonation combustion based engine has already led to considerable interest in the development of wave rotor, pulse detonation, and rotating detonation engine configurations as alternative technologies offering improved performance for the next generation of aerospace propulsion [...] Read more.
The higher thermodynamic efficiency inherent in a detonation combustion based engine has already led to considerable interest in the development of wave rotor, pulse detonation, and rotating detonation engine configurations as alternative technologies offering improved performance for the next generation of aerospace propulsion systems, but it is now important to consider their emissions also. To assess both performance and emissions, this paper focuses on the feasibility of using alternative fuels in detonation combustion. Thus, the standard aviation fuels Jet-A, Acetylene, Jatropha Bio-synthetic Paraffinic Kerosene, Camelina Bio-synthetic Paraffinic Kerosene, Algal Biofuel, and Microalgae Biofuel are all asessed under detonation combustion conditions. An analytical model accounting for the Rankine-Hugoniot Equation, Rayleigh Line Equation, and Zel’dovich–von Neumann–Doering model, and taking into account single step chemistry and thermophysical properties for a stoichiometric mixture, is applied to a simple detonation tube test case configuration. The computed pressure rise and detonation velocity are shown to be in good agreement with published literature. Additional computations examine the effects of initial pressure, temperature, and mass flux on the physical properties of the flow. The results indicate that alternative fuels require higher initial mass flux and temperature to detonate. The benefits of alternative fuels appear significant. Full article
(This article belongs to the Special Issue Combustion and Propulsion)
Show Figures

Figure 1

Back to TopTop