Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = missing features in dark regions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 6889 KB  
Article
Machine Learning-Based Detection of Icebergs in Sea Ice and Open Water Using SAR Imagery
by Zahra Jafari, Pradeep Bobby, Ebrahim Karami and Rocky Taylor
Remote Sens. 2025, 17(4), 702; https://doi.org/10.3390/rs17040702 - 19 Feb 2025
Cited by 1 | Viewed by 1561
Abstract
Icebergs pose significant risks to shipping, offshore oil exploration, and underwater pipelines. Detecting and monitoring icebergs in the North Atlantic Ocean, where darkness and cloud cover are frequent, is particularly challenging. Synthetic aperture radar (SAR) serves as a powerful tool to overcome these [...] Read more.
Icebergs pose significant risks to shipping, offshore oil exploration, and underwater pipelines. Detecting and monitoring icebergs in the North Atlantic Ocean, where darkness and cloud cover are frequent, is particularly challenging. Synthetic aperture radar (SAR) serves as a powerful tool to overcome these difficulties. In this paper, we propose a method for automatically detecting and classifying icebergs in various sea conditions using C-band dual-polarimetric images from the RADARSAT Constellation Mission (RCM) collected throughout 2022 and 2023 across different seasons from the east coast of Canada. This method classifies SAR imagery into four distinct classes: open water (OW), which represents areas of water free of icebergs; open water with target (OWT), where icebergs are present within open water; sea ice (SI), consisting of ice-covered regions without any icebergs; and sea ice with target (SIT), where icebergs are embedded within sea ice. Our approach integrates statistical features capturing subtle patterns in RCM imagery with high-dimensional features extracted using a pre-trained Vision Transformer (ViT), further augmented by climate parameters. These features are classified using XGBoost to achieve precise differentiation between these classes. The proposed method achieves a low false positive rate of 1% for each class and a missed detection rate ranging from 0.02% for OWT to 0.04% for SI and SIT, along with an overall accuracy of 96.5% and an area under curve (AUC) value close to 1. Additionally, when the classes were merged for target detection (combining SI with OW and SIT with OWT), the model demonstrated an even higher accuracy of 98.9%. These results highlight the robustness and reliability of our method for large-scale iceberg detection along the east coast of Canada. Full article
Show Figures

Figure 1

22 pages, 56589 KB  
Article
Target Search for Joint Local and High-Level Semantic Information Based on Image Preprocessing Enhancement in Indoor Low-Light Environments
by Huapeng Tang, Danyang Qin, Jiaqiang Yang, Haoze Bie, Yue Li, Yong Zhu and Lin Ma
ISPRS Int. J. Geo-Inf. 2023, 12(10), 400; https://doi.org/10.3390/ijgi12100400 - 30 Sep 2023
Cited by 4 | Viewed by 1912
Abstract
In indoor low-light environments, the lack of light makes the captured images often suffer from quality degradation problems, including missing features in dark areas, noise interference, low brightness, and low contrast. Therefore, the feature extraction algorithms are unable to extract the feature information [...] Read more.
In indoor low-light environments, the lack of light makes the captured images often suffer from quality degradation problems, including missing features in dark areas, noise interference, low brightness, and low contrast. Therefore, the feature extraction algorithms are unable to extract the feature information contained in the images accurately, thereby hindering the subsequent target search task in this environment and making it difficult to determine the location information of the target. Aiming at this problem, a joint local and high-level semantic information (JLHS) target search method is proposed based on joint bilateral filtering and camera response model (JBCRM) image preprocessing enhancement. The JBCRM method improves the image quality by highlighting the dark region features and removing the noise interference in order to solve the problem of the difficult extraction of feature points in low-light images, thus providing better visual data for subsequent target search tasks. The JLHS method increases the feature matching accuracy between the target image and the offline database image by combining local and high-level semantic information to characterize the image content, thereby boosting the accuracy of the target search. Experiments show that, compared with the existing image-enhancement methods, the PSNR of the JBCRM method is increased by 34.24% at the highest and 2.61% at the lowest. The SSIM increased by 63.64% at most and increased by 12.50% at least. The Laplacian operator increased by 54.47% at most and 3.49% at least. When the mainstream feature extraction techniques, SIFT, ORB, AKAZE, and BRISK, are utilized, the number of feature points in the JBCRM-enhanced images are improved by a minimum of 20.51% and a maximum of 303.44% over the original low-light images. Compared with other target search methods, the average search error of the JLHS method is only 9.8 cm, which is 91.90% lower than the histogram-based search method. Meanwhile, the average search error is reduced by 18.33% compared to the VGG16-based target search method. As a result, the method proposed in this paper significantly improves the accuracy of the target search in low-light environments, thus broadening the application scenarios of target search in indoor environments, and providing an effective solution for accurately determining the location of the target in geospatial space. Full article
Show Figures

Figure 1

11 pages, 1963 KB  
Article
Underwater Image Enhancement Based on the Improved Algorithm of Dark Channel
by Dachang Zhu
Mathematics 2023, 11(6), 1382; https://doi.org/10.3390/math11061382 - 13 Mar 2023
Cited by 19 | Viewed by 4494
Abstract
Enhancing underwater images presents a challenging problem owing to the influence of ocean currents, the refraction, absorption and scattering of light by suspended particles, and the weak illumination intensity. Recently, different methods have relied on the underwater image formation model and deep learning [...] Read more.
Enhancing underwater images presents a challenging problem owing to the influence of ocean currents, the refraction, absorption and scattering of light by suspended particles, and the weak illumination intensity. Recently, different methods have relied on the underwater image formation model and deep learning techniques to restore underwater images. However, they tend to degrade the underwater images, interfere with background clutter and miss the boundary details of blue regions. An improved image fusion and enhancement algorithm based on a prior dark channel is proposed in this paper based on graph theory. Image edge feature sharpening, and dark detail enhancement by homomorphism filtering in CIELab colour space are realized. In the RGB colour space, the multi-scale retinal with colour restoration (MSRCR) algorithm is used to improve colour deviation and enhance colour saturation. The contrast-limited adaptive histogram equalization (CLAHE) algorithm defogs and enhances image contrast. Finally, according to the dark channel images of the three processing results, the final enhanced image is obtained by the linear fusion of multiple images and channels. Experimental results demonstrate the effectiveness and practicality of the proposed method on various data sets. Full article
(This article belongs to the Special Issue Advanced Graph Theory and Combinatorics)
Show Figures

Figure 1

18 pages, 6794 KB  
Article
Validation and Comparison of MODIS C6.1 and C6 Aerosol Products over Beijing, China
by Xinpeng Tian, Qiang Liu, Xiuhong Li and Jing Wei
Remote Sens. 2018, 10(12), 2021; https://doi.org/10.3390/rs10122021 - 12 Dec 2018
Cited by 42 | Viewed by 5337
Abstract
The operational Moderate Resolution Imaging Spectroradiometer (MODIS) Aerosol Products (APs) have provided long-term and wide-spatial-coverage aerosol optical properties across the globe, such as aerosol optical depth (AOD). However, the performance of the latest Collection 6.1 (C6.1) of MODIS APs is still unclear over [...] Read more.
The operational Moderate Resolution Imaging Spectroradiometer (MODIS) Aerosol Products (APs) have provided long-term and wide-spatial-coverage aerosol optical properties across the globe, such as aerosol optical depth (AOD). However, the performance of the latest Collection 6.1 (C6.1) of MODIS APs is still unclear over urban areas that feature complex surface characteristics and aerosol models. The aim of this study was to validate and compare the performance of the MODIS C6.1 and C6 APs (MxD04, x = O for Terra, x = Y for Aqua) over Beijing, China. The results of the Dark Target (DT) and Deep Blue (DB) algorithms were validated against Aerosol Robotic Network (AERONET) ground-based observations at local sites. The retrieval uncertainties and accuracies were evaluated using the expected error (EE: ±0.05 + 15%) and the root-mean-square error (RMSE). It was found that the MODIS C6.1 DT products performed better than the C6 DT products, with a greater percentage (by about 13%–14%) of the retrievals falling within the EE. However, the DT retrievals collected from two collections were significantly overestimated in the Beijing region, with more than 64% and 48% of the samples falling above the EE for the Terra and Aqua satellites, respectively. The MODIS C6.1 DB products performed similarly to the C6 DB products, with 70%–73% of the retrievals matching within the EE and estimation uncertainties. Moreover, the DB algorithm performed much better than DT algorithm over urban areas, especially in winter where abundant missing pixels were found in DT products. To investigate the effects of factors on AOD retrievals, the variability in the assumed surface reflectance and the main optical properties applied in DT and DB algorithms are also analyzed. Full article
(This article belongs to the Special Issue Satellite Derived Global Atmosphere Product Validation/Evaluation)
Show Figures

Graphical abstract

Back to TopTop