Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = minutiae triplet

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 7580 KiB  
Article
Fingerprint Recognition in Forensic Scenarios
by Nuno Martins, José Silvestre Silva and Alexandre Bernardino
Sensors 2024, 24(2), 664; https://doi.org/10.3390/s24020664 - 20 Jan 2024
Cited by 8 | Viewed by 8808
Abstract
Fingerprints are unique patterns used as biometric keys because they allow an individual to be unambiguously identified, making their application in the forensic field a common practice. The design of a system that can match the details of different images is still an [...] Read more.
Fingerprints are unique patterns used as biometric keys because they allow an individual to be unambiguously identified, making their application in the forensic field a common practice. The design of a system that can match the details of different images is still an open problem, especially when applied to large databases or, to real-time applications in forensic scenarios using mobile devices. Fingerprints collected at a crime scene are often manually processed to find those that are relevant to solving the crime. This work proposes an efficient methodology that can be applied in real time to reduce the manual work in crime scene investigations that consumes time and human resources. The proposed methodology includes four steps: (i) image pre-processing using oriented Gabor filters; (ii) the extraction of minutiae using a variant of the Crossing Numbers method which include a novel ROI definition through convex hull and erosion followed by replacing two or more very close minutiae with an average minutiae; (iii) the creation of a model that represents each minutia through the characteristics of a set of polygons including neighboring minutiae; (iv) the individual search of a match for each minutia in different images using metrics on the absolute and relative errors. While in the literature most methodologies look to validate the entire fingerprint model, connecting the minutiae or using minutiae triplets, we validate each minutia individually using n-vertex polygons whose vertices are neighbor minutiae that surround the reference. Our method also reveals robustness against false minutiae since several polygons are used to represent the same minutia, there is a possibility that even if there are false minutia, the true polygon is present and identified; in addition, our method is immune to rotations and translations. The results show that the proposed methodology can be applied in real time in standard hardware implementation, with images of arbitrary orientations. Full article
(This article belongs to the Section Biosensors)
Show Figures

Figure 1

20 pages, 878 KiB  
Article
Improving Fingerprint Verification Using Minutiae Triplets
by Miguel Angel Medina-Pérez, Milton García-Borroto, Andres Eduardo Gutierrez-Rodríguez and Leopoldo Altamirano-Robles
Sensors 2012, 12(3), 3418-3437; https://doi.org/10.3390/s120303418 - 8 Mar 2012
Cited by 62 | Viewed by 12889
Abstract
Improving fingerprint matching algorithms is an active and important research area in fingerprint recognition. Algorithms based on minutia triplets, an important matcher family, present some drawbacks that impact their accuracy, such as dependency to the order of minutiae in the feature, insensitivity to [...] Read more.
Improving fingerprint matching algorithms is an active and important research area in fingerprint recognition. Algorithms based on minutia triplets, an important matcher family, present some drawbacks that impact their accuracy, such as dependency to the order of minutiae in the feature, insensitivity to the reflection of minutiae triplets, and insensitivity to the directions of the minutiae relative to the sides of the triangle. To alleviate these drawbacks, we introduce in this paper a novel fingerprint matching algorithm, named M3gl. This algorithm contains three components: a new feature representation containing clockwise-arranged minutiae without a central minutia, a new similarity measure that shifts the triplets to find the best minutiae correspondence, and a global matching procedure that selects the alignment by maximizing the amount of global matching minutiae. To make M3gl faster, it includes some optimizations to discard non-matching minutia triplets without comparing the whole representation. In comparison with six verification algorithms, M3gl achieves the highest accuracy in the lowest matching time, using FVC2002 and FVC2004 databases. Full article
(This article belongs to the Special Issue Hand-Based Biometrics Sensors and Systems)
Show Figures

Back to TopTop