Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (53)

Search Parameters:
Keywords = mineralized dentin matrix

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 7820 KiB  
Article
Role of Dystrophic Calcification in Reparative Dentinogenesis After Rat Molar Pulpotomy
by Naoki Edanami, Kunihiko Yoshiba, Razi Saifullah Ibn Belal, Nagako Yoshiba, Shoji Takenaka, Naoto Ohkura, Shintaro Takahara, Takako Ida, Rosa Baldeon, Susan Kasimoto, Pemika Thongtade and Yuichiro Noiri
Int. J. Mol. Sci. 2025, 26(15), 7130; https://doi.org/10.3390/ijms26157130 - 24 Jul 2025
Viewed by 193
Abstract
Vital pulp therapy with calcium hydroxide or mineral trioxide aggregate (MTA) rapidly induces dystrophic calcification and promotes the accumulation of two members of small integrin-binding ligand N-linked glycoproteins: osteopontin (OPN) and dentin matrix protein-1 (DMP1). However, the precise relationship between these initial events [...] Read more.
Vital pulp therapy with calcium hydroxide or mineral trioxide aggregate (MTA) rapidly induces dystrophic calcification and promotes the accumulation of two members of small integrin-binding ligand N-linked glycoproteins: osteopontin (OPN) and dentin matrix protein-1 (DMP1). However, the precise relationship between these initial events and their roles in reparative dentinogenesis remain unclear. This study aimed to clarify the relationship between dystrophic calcification, OPN and DMP1 accumulation, and reparative dentin formation. Pulpotomy was performed on rat molars using MTA or zirconium oxide (ZrO2). ZrO2 was used as a control to assess pulp healing in the absence of dystrophic calcification. Pulpal responses were evaluated from 3 h to 7 days postoperatively via elemental mapping, micro-Raman spectroscopy, and histological staining. In the MTA-treated group, a calcium-rich dystrophic calcification zone containing calcite and hydroxyapatite was observed at 3 h after treatment; OPN and DMP1 accumulated under the dystrophic calcification zone by day 3; reparative dentin formed below the region of OPN and DMP1 accumulation by day 7. In contrast, these reactions did not occur in the ZrO2-treated group. These results suggest that dystrophic calcification serves as a key trigger for OPN and DMP1 accumulation and plays a pivotal role in reparative dentinogenesis. Full article
Show Figures

Figure 1

29 pages, 15018 KiB  
Article
Investigating the Osteoregenerative Properties of Juglans regia L. Extract on Mesenchymal Stem Cells and Osteoblasts Through Evaluation of Bone Markers: A Pilot Study
by Alina Hanga-Fărcaș, Gabriela Adriana Filip, Simona Valeria Clichici, Laura Grațiela Vicaș, Olga Şoritău, Otilia Andercou, Luminița Fritea and Mariana Eugenia Mureșan
J. Funct. Biomater. 2025, 16(7), 268; https://doi.org/10.3390/jfb16070268 - 21 Jul 2025
Viewed by 269
Abstract
Bone tissue regeneration is a complex process that takes place at the level of osteoblasts derived from mesenchymal cells and occurs under the action of multiple signaling pathways and through the expression of osteoregenerative markers. The leaf extract of Juglans regia L. (JR) [...] Read more.
Bone tissue regeneration is a complex process that takes place at the level of osteoblasts derived from mesenchymal cells and occurs under the action of multiple signaling pathways and through the expression of osteoregenerative markers. The leaf extract of Juglans regia L. (JR) is rich in polyphenols with demonstrated osteoregeneration effects. In the present study, we investigated the extract’s effects on three types of cells with various stages of differentiation: adult mesenchymal stem cells (MSCs), osteoblasts at low passage (O6) and osteoblasts at advanced passage (O10). To assess the efficacy of the walnut leaf extract, in vitro treatments were performed in comparison with ellagic acid (EA) and catechin (CAT). The osteoregenerative properties of the leaf extract were evaluated in terms of cell viability, bone mineralization (by staining with alizarin red) and the expression of osteogenesis markers such as osteocalcin (OC), osteopontin (OPN), dentin matrix acidic phosphoprotein 1 (DMP1) and collagen type 1A. Another compound implicated in oxidative stress response, but also a bone homeostasis regulator, nuclear factor erythroid 2-related factor 2 (NRF2), was studied by immunocytochemistry. Together with collagen amount, alkaline phosphatase (ALP) activity and NF-kB levels were measured in cell lysates and supernatants. The obtained results demonstrate that JR treatment induced osteogenic differentiation and bone mineralization, and it showed protective effects against oxidative stress. Full article
(This article belongs to the Special Issue Functional Biomaterial for Bone Regeneration)
Show Figures

Figure 1

16 pages, 3074 KiB  
Review
The Role of Autophagy in the Mineralization Process of Bone and Dentin
by Ian Moran, Cassandra Villani and Anne George
Int. J. Mol. Sci. 2025, 26(13), 6278; https://doi.org/10.3390/ijms26136278 - 29 Jun 2025
Viewed by 487
Abstract
Autophagy is a cellular process that recycles intracellular macromolecules and degrades toxic cytoplasmic material to provide the cell with nutrients and facilitate survival. Although autophagy and its role in the differentiation of osteoblasts, osteoclasts, and odontoblasts has been described, the importance of autophagy [...] Read more.
Autophagy is a cellular process that recycles intracellular macromolecules and degrades toxic cytoplasmic material to provide the cell with nutrients and facilitate survival. Although autophagy and its role in the differentiation of osteoblasts, osteoclasts, and odontoblasts has been described, the importance of autophagy during matrix mineralization remains unaddressed. This review aims to characterize the autophagy/matrix mineralization relationship and elucidate the significance of autophagy during matrix mineralization. During the mineralization process, autophagy is important for cell survival and promotes the differentiation of osteoblasts and odontoblasts, the key cells that facilitate bone and dentin formation. Differentiation of these cells results in the synthesis of an organic proteinaceous matrix which subsequently forms the template for the deposition of calcium and phosphate to ultimately form crystalline hydroxyapatite. In bone, autophagy influences osteoblastic/osteoclastic activity and bone remodeling. In dentin, autophagy participates in odontogenic differentiation and facilitates odontoblastic secretion of dentin matrix proteins. This review aims to show that autophagy is critical for bone mineralization and tooth formation by supporting intracellular signaling pathways required for cell differentiation and subsequent matrix mineralization. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

17 pages, 2746 KiB  
Article
Histological Analysis of Sticky Tooth and Sticky Bone
by Robert Dłucik, Marcel Firlej, Katarzyna Bogus, Daniel Dłucik and Bogusława Orzechowska-Wylęgała
J. Funct. Biomater. 2025, 16(7), 233; https://doi.org/10.3390/jfb16070233 - 25 Jun 2025
Viewed by 1317
Abstract
Objective: This study aimed to compare the efficacy of Sticky Tooth (ST) derived from ground teeth and Sticky Bone (SB) based on equine bone and human allograft in maxillary bone defect regeneration through histological examination. Materials and Methods: Forty patients underwent maxillary alveolar [...] Read more.
Objective: This study aimed to compare the efficacy of Sticky Tooth (ST) derived from ground teeth and Sticky Bone (SB) based on equine bone and human allograft in maxillary bone defect regeneration through histological examination. Materials and Methods: Forty patients underwent maxillary alveolar ridge regeneration using four different biomaterials: Sticky Tooth processed with the BonMaker device (n = 10), Sticky Tooth prepared with the Smart Dentin Grinder (n = 10) Sticky Bone derived from an equine xenograft (n = 10), and Sticky Bone derived from human allografts (n = 10). CBCT imaging was performed preoperatively, post-regeneration, and during follow-up. Histological and quantitative statistical evaluation was conducted on biopsy samples obtained four months post-regeneration at the time of implant placement. Results: Successful alveolar ridge regeneration was achieved in all 40 patients. Histological analyses confirmed good integration between the biomaterials and bone tissue without signs of inflammation. Conclusion: Histological comparisons demonstrated that both ST and SB are effective biomaterials for bone regeneration. However, ST exhibited a faster bone healing process compared to xenograft and allograft SB. Full article
(This article belongs to the Section Bone Biomaterials)
Show Figures

Figure 1

20 pages, 10682 KiB  
Article
Temporal Profiling of Cellular and Molecular Processes in Osteodifferentiation of Dental Pulp Stem Cells
by Bibiána Baďurová, Kristina Nystøl, Terézia Okajček Michalič, Veronika Kucháriková, Dagmar Statelová, Slavomíra Nováková, Ján Strnádel, Erika Halašová and Henrieta Škovierová
Biology 2025, 14(3), 257; https://doi.org/10.3390/biology14030257 - 4 Mar 2025
Viewed by 920
Abstract
Based on the potential of DPSCs as the most promising candidates for bone tissue engineering, we comprehensively investigated the time-dependent cellular and molecular changes that occur during their osteodifferentiation. To analyze this area in-depth, we used both cellular and molecular approaches. Morphological changes [...] Read more.
Based on the potential of DPSCs as the most promising candidates for bone tissue engineering, we comprehensively investigated the time-dependent cellular and molecular changes that occur during their osteodifferentiation. To analyze this area in-depth, we used both cellular and molecular approaches. Morphological changes were monitored using bright-field microscopy, while the production of mineral deposits was quantified spectrophotometrically. The expression of a key mesenchymal stem cell marker, CD90, was assessed via flow cytometry. Finally, protein-level changes in whole cells were examined by fluorescence microscopy. Our results show successful long-term osteodifferentiation of the patient’s DPSCs within 25 days. In differentiated cells, mineralized extracellular matrix production gradually increased; in contrast, the expression of the specific stem cell marker CD90 significantly decreased. We observed dynamic changes in intracellular and extracellular proteins when collagen1 A1 and osteopontin appeared as earlier markers of osteogenesis, while apolipoprotein A2, bone morphogenetic protein 9, dentin sialophosphoprotein, and matrix metalloproteinase 8 were produced mainly in the late stages of this process. A decrease in actin microfilament expression indicated a reduction in cell proliferation, which could be used as another marker of osteogenic initiation. Our results suggest a coordinated process in vitro in which cells synthesize the necessary proteins and matrix components to regulate the growth of hydroxyapatite crystals and form the bone matrix. Full article
(This article belongs to the Special Issue Bone Cell Biology)
Show Figures

Figure 1

14 pages, 2407 KiB  
Article
Low, but Not High, Pulsating Fluid Shear Stress Affects Matrix Extracellular Phosphoglycoprotein Expression, Mainly via Integrin β Subunits in Pre-Osteoblasts
by Jianfeng Jin and Behrouz Zandieh-Doulabi
Curr. Issues Mol. Biol. 2024, 46(11), 12428-12441; https://doi.org/10.3390/cimb46110738 - 4 Nov 2024
Cited by 1 | Viewed by 1000
Abstract
Matrix extracellular phosphoglycoprotein (Mepe), present in bone and dentin, plays important multifunctional roles in cell signaling, bone mineralization, and phosphate homeostasis. Mepe expression in bone cells changes in response to pulsating fluid shear stress (PFSS), which is transmitted into cells through integrin-based adhesion [...] Read more.
Matrix extracellular phosphoglycoprotein (Mepe), present in bone and dentin, plays important multifunctional roles in cell signaling, bone mineralization, and phosphate homeostasis. Mepe expression in bone cells changes in response to pulsating fluid shear stress (PFSS), which is transmitted into cells through integrin-based adhesion sites, i.e., α and β subunits. Whether and to what extent PFSS influences Mepe expression through the modulation of integrin α and/or β subunit expression in pre-osteoblasts is uncertain. Therefore, we aimed to test whether low and/or high PFSS affects Mepe expression via modulation of integrin α and/or β subunit expression. MC3T3-E1 pre-osteoblasts were treated with ± 1 h PFSS (magnitude: 0.3 Pa (low PFSS) or 0.7 Pa (high PFSS); frequency: 1 Hz). Single integrin fluorescence intensity in pre-osteoblasts was increased, but single integrin area was decreased by low and high PFSS. Expression of two integrin α subunit-related genes (Itga1 and Itga5 2) was increased by low PFSS, and one (Itga5 2) by high PFSS. Expression of five integrin β subunit genes (Itgb1, Itgb3, Itgb5, Itgb5 13, and Itgb5 123) was increased by low PFSS, and three (Itgb5, Itgb5 13, and Itgb5 123) by high PFSS. Interestingly, Mepe expression in pre-osteoblasts was only modulated by low, but not high, PFSS. In conclusion, both low and high PFSS affected integrin α and β subunit expression in pre-osteoblasts, while integrin β subunit expression was more altered by low PFSS. Importantly, Mepe gene expression was only affected by low PFSS. These results might explain the different ways that Mepe-induced changes in pre-osteoblast mechanosensitivity may drive signaling pathways of bone cell function at low or high impact loading. These findings might have physiological and biomedical implications and require future research specifically addressing the precise role of integrin α or β subunits and Mepe during dynamic loading in bone health and disease. Full article
Show Figures

Figure 1

18 pages, 6904 KiB  
Systematic Review
Regenerating Alveolar Bone for Implant Placement: The Efficacy of Autogenous Mineralized Dentin Matrix—A Systematic Review and Meta-Analysis
by Madalena Meném, Alexandre Santos and Paulo Mascarenhas
Appl. Sci. 2024, 14(21), 10018; https://doi.org/10.3390/app142110018 - 2 Nov 2024
Viewed by 2388
Abstract
The preservation of the alveolar ridge has gained increasing importance for various types of rehabilitation, including dental implant placement. Consequently, researchers have explored different bone grafts, such as mineralized dentin matrix grafts. However, a comprehensive review of the efficacy of autogenous mineralized dentin [...] Read more.
The preservation of the alveolar ridge has gained increasing importance for various types of rehabilitation, including dental implant placement. Consequently, researchers have explored different bone grafts, such as mineralized dentin matrix grafts. However, a comprehensive review of the efficacy of autogenous mineralized dentin (AMD) for alveolar ridge preservation remains lacking. In this review, we evaluated the efficacy of AMD as a method for alveolar ridge preservation in cases of delayed implant placement. A comprehensive search through PubMed, Google Scholar, Cochrane Library, and B-on repositories was conducted without time constraints up to July 2024 to identify peer-reviewed human studies. These studies assessed the percentage of newly formed bone and residual graft following bone regeneration with AMD grafts after tooth extraction, specifically in the context of delayed implant placement. Our analysis included four selected studies involving 55 patients and 67 sockets. The findings suggest that AMD grafts resulted in an average (and 95% confidence interval) of 43.8% [36.6%, 50.8%] newly formed bone, and delayed implant placement was a feasible surgical option for all patients. Although the available literature is scarce, AMD grafting has yielded promising outcomes as a method for bone reconstruction. Nevertheless, additional randomized controlled trials with larger sample sizes and longer follow-ups are required to substantiate these findings. Full article
(This article belongs to the Special Issue Recent Advances in Digital Dentistry and Oral Implantology)
Show Figures

Figure 1

23 pages, 2316 KiB  
Review
Dentin Mechanobiology: Bridging the Gap between Architecture and Function
by Xiangting Fu and Hye Sung Kim
Int. J. Mol. Sci. 2024, 25(11), 5642; https://doi.org/10.3390/ijms25115642 - 22 May 2024
Cited by 10 | Viewed by 3010
Abstract
It is remarkable how teeth maintain their healthy condition under exceptionally high levels of mechanical loading. This suggests the presence of inherent mechanical adaptation mechanisms within their structure to counter constant stress. Dentin, situated between enamel and pulp, plays a crucial role in [...] Read more.
It is remarkable how teeth maintain their healthy condition under exceptionally high levels of mechanical loading. This suggests the presence of inherent mechanical adaptation mechanisms within their structure to counter constant stress. Dentin, situated between enamel and pulp, plays a crucial role in mechanically supporting tooth function. Its intermediate stiffness and viscoelastic properties, attributed to its mineralized, nanofibrous extracellular matrix, provide flexibility, strength, and rigidity, enabling it to withstand mechanical loading without fracturing. Moreover, dentin’s unique architectural features, such as odontoblast processes within dentinal tubules and spatial compartmentalization between odontoblasts in dentin and sensory neurons in pulp, contribute to a distinctive sensory perception of external stimuli while acting as a defensive barrier for the dentin-pulp complex. Since dentin’s architecture governs its functions in nociception and repair in response to mechanical stimuli, understanding dentin mechanobiology is crucial for developing treatments for pain management in dentin-associated diseases and dentin-pulp regeneration. This review discusses how dentin’s physical features regulate mechano-sensing, focusing on mechano-sensitive ion channels. Additionally, we explore advanced in vitro platforms that mimic dentin’s physical features, providing deeper insights into fundamental mechanobiological phenomena and laying the groundwork for effective mechano-therapeutic strategies for dentinal diseases. Full article
(This article belongs to the Collection Feature Papers in Materials Science)
Show Figures

Figure 1

11 pages, 1524 KiB  
Article
Poly(Aspartic Acid) Promotes Odontoblast-like Cell Differentiation in Rat Molars with Exposed Pulp
by Fernanda Furuse Ventura dos Santos, Stefan Habelitz, Fábio Dupart Nascimento, Victor Elias Arana-Chavez and Roberto Ruggiero Braga
J. Funct. Biomater. 2023, 14(11), 537; https://doi.org/10.3390/jfb14110537 - 1 Nov 2023
Cited by 4 | Viewed by 2351
Abstract
In recent years, alternative pulpal therapies targeting dentinogenesis signaling pathways using different peptides have been investigated. The aim of this study was to verify the effectiveness of poly(aspartic acid), pAsp, in dentin regeneration using an animal model. Methods: Mechanical pulp exposure was performed [...] Read more.
In recent years, alternative pulpal therapies targeting dentinogenesis signaling pathways using different peptides have been investigated. The aim of this study was to verify the effectiveness of poly(aspartic acid), pAsp, in dentin regeneration using an animal model. Methods: Mechanical pulp exposure was performed in the upper molars of 56 Wistar rats, randomly divided as follows (n = 14): control (no treatment); MTA group—pulp capping with mineral trioxide aggregate (MTA Angelus); pAsp group—application of 20 μL of pAsp solution (25 mg·mL−1); MTA+pAsp group—application of MTA mixed with pAsp (5:1 by mass). Animals were euthanized after 7 or 21 days. Histological sections were submitted to hematoxylin-eosin and Brown and Brenn staining and immunohistochemical analysis for osteopontin (OPN) and dentin matrix protein 1 (DMP 1). Results: At 7 days, an acute inflammatory infiltrate and the presence of disorganized mineralized tissue were observed in all groups. At 21 days, the quality and thickness of the reparative dentin in treated groups were superior to the control, and bacterial contamination was observed in two MTA-pAsp specimens. While all treated groups showed intense immunostaining for OPN at 21 days, only the pAsp group expressed DMP 1, indicating the presence of fully differentiated odontoblast-like cells. Conclusion: Poly(aspartic) acid promoted dentin regeneration in rat molars in the absence of an additional calcium source and may be an alternative to MTA as a pulp-capping agent. Full article
(This article belongs to the Special Issue Biomaterials in Restorative Dentistry and Endodontics)
Show Figures

Figure 1

12 pages, 5471 KiB  
Article
Novel Universal Bond Containing Bioactive Monomer Promotes Odontoblast Differentiation In Vitro
by Yaxin Rao, Youjing Qiu, Bayarchimeg Altankhishig, Yasuhiro Matsuda, Md Riasat Hasan and Takashi Saito
J. Funct. Biomater. 2023, 14(10), 506; https://doi.org/10.3390/jfb14100506 - 10 Oct 2023
Cited by 3 | Viewed by 2143
Abstract
The development of multifunctional materials has been expected in dentistry. This study investigated the effects of a novel universal bond containing a bioactive monomer, calcium 4-methacryloxyethyl trimellitic acid (CMET), on odontoblast differentiation in vitro. Eluates from bioactive universal bond with CMET (BA (+), [...] Read more.
The development of multifunctional materials has been expected in dentistry. This study investigated the effects of a novel universal bond containing a bioactive monomer, calcium 4-methacryloxyethyl trimellitic acid (CMET), on odontoblast differentiation in vitro. Eluates from bioactive universal bond with CMET (BA (+), BA bond), bioactive universal bond without CMET (BA (−)), and Scotchbond Universal Plus adhesive (SC, 3M ESPE, USA) were added to the culture medium of the rat odontoblast-like cell line MDPC-23. Then, cell proliferation, differentiation, and mineralization were examined. Statistical analyses were performed using a one-way ANOVA and Tukey’s HSDtest. The cell counting kit-8 assay and alkaline phosphatase (ALP) assay showed that cell proliferation and ALP were significantly higher in the 0.5% BA (+) group than in the other groups. In a real-time reverse-transcription polymerase chain reaction, mRNA expression of the odontogenic markers, dentin sialophosphoprotein (DSPP) and dentin matrix protein-1 (DMP-1), was significantly higher in the 0.5% BA (+) group than in the BA (−) and SC groups. Calcific nodule formation in MDPC-23 cells was accelerated in the BA (+) group in a dose-dependent manner (p < 0.01); however, no such effect was observed in the BA (−) and SC groups. Thus, the BA bond shows excellent potential for dentin regeneration. Full article
(This article belongs to the Section Dental Biomaterials)
Show Figures

Figure 1

10 pages, 4879 KiB  
Article
Effects of Red LED Irradiation in Enhancing the Mineralization of Human Dental Pulp Cells In Vitro
by Ying Yang, Ok-Su Kim, Guo Liu, Bin-Na Lee, Danyang Liu, Wenqi Fu, Siyu Zhu, Jae-Seok Kang, Byunggook Kim and Okjoon Kim
Int. J. Mol. Sci. 2023, 24(11), 9767; https://doi.org/10.3390/ijms24119767 - 5 Jun 2023
Cited by 1 | Viewed by 1778
Abstract
Dentin regeneration is the preferred method used to preserve dental pulp vitality after pulp exposure due to caries. Red light-emitting diode irradiation (LEDI), which is based on photobiomodulation (PBM), has been used to promote hard-tissue regeneration. However, the underlying mechanism still needs elucidation. [...] Read more.
Dentin regeneration is the preferred method used to preserve dental pulp vitality after pulp exposure due to caries. Red light-emitting diode irradiation (LEDI), which is based on photobiomodulation (PBM), has been used to promote hard-tissue regeneration. However, the underlying mechanism still needs elucidation. This study aimed to explore the mechanism involved in red LEDI affecting dentin regeneration. Alizarin red S (ARS) staining revealed that red LEDI induced mineralization of human dental pulp cells (HDPCs) in vitro. We further distinguished the cell proliferation (0–6 d), differentiation (6–12 d), and mineralization (12–18 d) of HDPCs in vitro and treated cells either with or without red LEDI in each stage. The results showed that red LEDI treatment in the mineralization stage, but not the proliferation or differentiation stages, increased mineralized nodule formation around HDPCs. Western blot also indicated that red LEDI treatment in the mineralization stage, but not the proliferation or differentiation stages, upregulated the expression of dentin matrix marker proteins (dentin sialophosphoprotein, DSPP; dentin matrix protein 1, DMP1; osteopontin, OPN) and an intracellular secretory vesicle marker protein (lysosomal-associated membrane protein 1, LAMP1). Therefore, the red LEDI might enhance the matrix vesicle secretion of HDPCs. On the molecular level, red LEDI enhanced mineralization by activating the mitogen-activated protein kinase (MAPK) signaling pathways (ERK and P38). ERK and P38 inhibition reduced mineralized nodule formation and the expression of relevant marker proteins. In summary, red LEDI enhanced the mineralization of HDPCs by functioning to produce a positive effect in the mineralization stage in vitro. Full article
(This article belongs to the Section Molecular Biophysics)
Show Figures

Figure 1

14 pages, 4871 KiB  
Article
The Combined Effects of Hydraulic Calcium Silicate Cement and Enamel Matrix Derivative Regarding Osteogenic and Dentinogenic Differentiation on Human Dental Pulp Stem Cells
by Ji-Young Yune, Donghee Lee and Sin-Young Kim
Materials 2023, 16(11), 4003; https://doi.org/10.3390/ma16114003 - 26 May 2023
Cited by 4 | Viewed by 1687
Abstract
The ideal treatment option for immature necrotic permanent teeth is regeneration of the pulp–dentin complex. Mineral trioxide aggregate (MTA), the conventional cement used for regenerative endodontic procedures, induces hard tissue repair. Various hydraulic calcium silicate cements (HCSCs) and enamel matrix derivative (EMD) also [...] Read more.
The ideal treatment option for immature necrotic permanent teeth is regeneration of the pulp–dentin complex. Mineral trioxide aggregate (MTA), the conventional cement used for regenerative endodontic procedures, induces hard tissue repair. Various hydraulic calcium silicate cements (HCSCs) and enamel matrix derivative (EMD) also promote osteoblast proliferation. The purpose of the present study was to determine the osteogenic and dentinogenic potential of commercially distributed MTA and HCSCs when applied in combination with Emdogain gel on human dental pulp stem cells (hDPSCs). The presence of Emdogain resulted in greater cell viability, and higher alkaline phosphatase activity was detected in the Emdogain-supplemented groups in the early days of cell culture. On qRT–PCR, the groups treated, respectively, with Biodentine and Endocem MTA Premixed in the presence of Emdogain showed an increased expression of the dentin formation marker DSPP, and the group treated with Endocem MTA Premixed in the presence of Emdogain showed an upregulated expression of the bone formation markers OSX and RUNX2. In an Alizarin Red-S staining assay, all of the experimental groups exhibited a greater formation of calcium nodules when treated in combination with Emdogain. Overall, the cytotoxicity and osteogenic/odontogenic potential of HCSCs were similar to that of ProRoot MTA. The addition of the EMD increased the osteogenic and dentinogenic differentiation markers. Full article
(This article belongs to the Special Issue Advances in Biomaterials for Endodontics and Their Biocompatibility)
Show Figures

Figure 1

11 pages, 40359 KiB  
Article
Pulp–Dentin Complex Regeneration with Cell Transplantation Technique Using Stem Cells Derived from Human Deciduous Teeth: Histological and Immunohistochemical Study in Immunosuppressed Rats
by Larissa Regina Kuntze dos Santos, André Antonio Pelegrine, Carlos Eduardo da Silveira Bueno, José Ricardo Muniz Ferreira, Antonio Carlos Aloise, Carolina Pessoa Stringheta, Elizabeth Ferreira Martinez and Rina Andréa Pelegrine
Bioengineering 2023, 10(5), 610; https://doi.org/10.3390/bioengineering10050610 - 19 May 2023
Cited by 4 | Viewed by 3062
Abstract
The aim of this study was to histologically verify the performance of pulp-derived stem cells used in the pulp–dentin complex regeneration. Maxillary molars of 12 immunosuppressed rats were divided into two groups: the SC (stem cells) group, and the PBS (just standard phosphate-buffered [...] Read more.
The aim of this study was to histologically verify the performance of pulp-derived stem cells used in the pulp–dentin complex regeneration. Maxillary molars of 12 immunosuppressed rats were divided into two groups: the SC (stem cells) group, and the PBS (just standard phosphate-buffered saline) group. After pulpectomy and canal preparation, the teeth received the designated materials, and the cavities were sealed. After 12 weeks, the animals were euthanized, and the specimens underwent histological processing and qualitative evaluation of intracanal connective tissue, odontoblast-like cells, intracanal mineralized tissue, and periapical inflammatory infiltrate. Immunohistochemical evaluation was performed to detect dentin matrix protein 1 (DMP1). In the PBS group, an amorphous substance and remnants of mineralized tissue were observed throughout the canal, and abundant inflammatory cells were observed in the periapical region. In the SC group, an amorphous substance and remnants of mineralized tissue were observed throughout the canal; odontoblasts-like cells immunopositive for DMP1 and mineral plug were observed in the apical region of the canal; and a mild inflammatory infiltrate, intense vascularization, and neoformation of organized connective tissue were observed in the periapical region. In conclusion, the transplantation of human pulp stem cells promoted partial pulp tissue neoformation in adult rat molars. Full article
Show Figures

Figure 1

13 pages, 5863 KiB  
Article
Dentin, Dentin Graft, and Bone Graft: Microscopic and Spectroscopic Analysis
by Elio Minetti, Andrea Palermo, Giuseppina Malcangi, Alessio Danilo Inchingolo, Antonio Mancini, Gianna Dipalma, Francesco Inchingolo, Assunta Patano and Angelo Michele Inchingolo
J. Funct. Biomater. 2023, 14(5), 272; https://doi.org/10.3390/jfb14050272 - 13 May 2023
Cited by 18 | Viewed by 3916
Abstract
Background: The use of the human dentin matrix could serve as an alternative to autologous, allogenic, and xenogeneic bone grafts. Since 1967, when the osteoinductive characteristics of autogenous demineralized dentin matrix were revealed, autologous tooth grafts have been advocated. The tooth is very [...] Read more.
Background: The use of the human dentin matrix could serve as an alternative to autologous, allogenic, and xenogeneic bone grafts. Since 1967, when the osteoinductive characteristics of autogenous demineralized dentin matrix were revealed, autologous tooth grafts have been advocated. The tooth is very similar to the bone and contains many growth factors. The purpose of the present study is to evaluate the similarities and differences between the three samples (dentin, demineralized dentin, and alveolar cortical bone) with the aim of demonstrating that the demineralized dentin can be considered in regenerative surgery as an alternative to the autologous bone. Methods: This in vitro study analyzed the biochemical characterizations of 11 dentin granules (Group A), 11 demineralized using the Tooth Transformer (Group B), and dentin granules and 11 cortical bone granules (Group C) using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) to evaluate mineral content. Atomic percentages of C (carbon), O (oxygen), Ca (calcium), and P (phosphorus) were individually analyzed and compared by the statistical t-test. Results: The significant p-value (p < 0.05) between group A and group C indicated that these two groups were not significantly similar, while the non-significant result (p > 0.05) obtained between group B and group C indicated that these two groups are similar. Conclusions: The findings support that the hypothesis that the demineralization process can lead to the dentin being remarkably similar to the natural bone in terms of their surface chemical composition. The demineralized dentin can therefore be considered an alternative to the autologous bone in regenerative surgery. Full article
Show Figures

Figure 1

21 pages, 1303 KiB  
Review
Research Advances on Hydrogel-Based Materials for Tissue Regeneration and Remineralization in Tooth
by Zhijun Zhang, Fei Bi and Weihua Guo
Gels 2023, 9(3), 245; https://doi.org/10.3390/gels9030245 - 20 Mar 2023
Cited by 11 | Viewed by 6256
Abstract
Tissue regeneration and remineralization in teeth is a long-term and complex biological process, including the regeneration of pulp and periodontal tissue, and re-mineralization of dentin, cementum and enamel. Suitable materials are needed to provide cell scaffolds, drug carriers or mineralization in this environment. [...] Read more.
Tissue regeneration and remineralization in teeth is a long-term and complex biological process, including the regeneration of pulp and periodontal tissue, and re-mineralization of dentin, cementum and enamel. Suitable materials are needed to provide cell scaffolds, drug carriers or mineralization in this environment. These materials need to regulate the unique odontogenesis process. Hydrogel-based materials are considered good scaffolds for pulp and periodontal tissue repair in the field of tissue engineering due to their inherent biocompatibility and biodegradability, slow release of drugs, simulation of extracellular matrix, and the ability to provide a mineralized template. The excellent properties of hydrogels make them particularly attractive in the research of tissue regeneration and remineralization in teeth. This paper introduces the latest progress of hydrogel-based materials in pulp and periodontal tissue regeneration and hard tissue mineralization and puts forward prospects for their future application. Overall, this review reveals the application of hydrogel-based materials in tissue regeneration and remineralization in teeth. Full article
Show Figures

Figure 1

Back to TopTop