Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = microcavity billiards

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 18573 KiB  
Article
Ray–Wave Correspondence in Anisotropic Mesoscopic Billiards
by Martina Hentschel, Samuel Schlötzer and Lukas Seemann
Entropy 2025, 27(2), 132; https://doi.org/10.3390/e27020132 - 26 Jan 2025
Viewed by 629
Abstract
Mesoscopic billiard systems for electrons and light, realized as quantum dots or optical microcavities, have enriched the fields of quantum chaos and nonlinear dynamics not only by enlarging the class of model systems, but also by providing access to their experimental realization. Here, [...] Read more.
Mesoscopic billiard systems for electrons and light, realized as quantum dots or optical microcavities, have enriched the fields of quantum chaos and nonlinear dynamics not only by enlarging the class of model systems, but also by providing access to their experimental realization. Here, we add yet another system class, two-dimensional billiards with anisotropies. One example is the anisotropic dispersion relation relevant in bilayer graphene known as trigonal warping, and another is the birefringent closed optical disk cavity. We demonstrate that the established concept of ray–wave correspondence also provides useful insight for anisotropic billiard systems. First, we approach the dynamics of the anisotropic disk from the ray-tracing side that takes the anisotropy in momentum space into account, based on the non-spherical index ellipsoid. Second, we use transformation optics to solve the wave problem and find the resonances to be those of the isotropic elliptical cavity. We illustrate ray–wave correspondence and mark differences in the description of optical and electronic anisotropic systems. Full article
(This article belongs to the Special Issue Recent Advances in the Theory of Nonlinear Lattices)
Show Figures

Figure 1

10 pages, 1217 KiB  
Article
Universality and beyond in Optical Microcavity Billiards with Source-Induced Dynamics
by Lukas Seemann and Martina Hentschel
Entropy 2023, 25(1), 95; https://doi.org/10.3390/e25010095 - 3 Jan 2023
Cited by 1 | Viewed by 2109
Abstract
Optical microcavity billiards are a paradigm of a mesoscopic model system for quantum chaos. We demonstrate the action and origin of ray-wave correspondence in real and phase space using far-field emission characteristics and Husimi functions. Whereas universality induced by the invariant-measure dominated far-field [...] Read more.
Optical microcavity billiards are a paradigm of a mesoscopic model system for quantum chaos. We demonstrate the action and origin of ray-wave correspondence in real and phase space using far-field emission characteristics and Husimi functions. Whereas universality induced by the invariant-measure dominated far-field emission is known to be a feature shaping the properties of many lasing optical microcavities, the situation changes in the presence of sources that we discuss here. We investigate the source-induced dynamics and the resulting limits of universality while we find ray-picture results to remain a useful tool in order to understand the wave behaviour of optical microcavities with sources. We demonstrate the source-induced dynamics in phase space from the source ignition until a stationary regime is reached comparing results from ray, ray-with-phase, and wave simulations and explore ray–wave correspondence. Full article
Show Figures

Figure 1

17 pages, 3674 KiB  
Article
Universal Single-Mode Lasing in Fully Chaotic Billiard Lasers
by Mengyu You, Daisuke Sakakibara, Kota Makino, Yonosuke Morishita, Kazutoshi Matsumura, Yuta Kawashima, Manao Yoshikawa, Mahiro Tonosaki, Kazutaka Kanno, Atsushi Uchida, Satoshi Sunada, Susumu Shinohara and Takahisa Harayama
Entropy 2022, 24(11), 1648; https://doi.org/10.3390/e24111648 - 14 Nov 2022
Cited by 5 | Viewed by 2857
Abstract
By numerical simulations and experiments of fully chaotic billiard lasers, we show that single-mode lasing states are stable, whereas multi-mode lasing states are unstable when the size of the billiard is much larger than the wavelength and the external pumping power is sufficiently [...] Read more.
By numerical simulations and experiments of fully chaotic billiard lasers, we show that single-mode lasing states are stable, whereas multi-mode lasing states are unstable when the size of the billiard is much larger than the wavelength and the external pumping power is sufficiently large. On the other hand, for integrable billiard lasers, it is shown that multi-mode lasing states are stable, whereas single-mode lasing states are unstable. These phenomena arise from the combination of two different nonlinear effects of mode-interaction due to the active lasing medium and deformation of the billiard shape. Investigations of billiard lasers with various shapes revealed that single-mode lasing is a universal phenomenon for fully chaotic billiard lasers. Full article
Show Figures

Figure 1

17 pages, 27772 KiB  
Article
Ray–Wave Correspondence in Microstar Cavities
by Julius Kullig and Jan Wiersig
Entropy 2022, 24(11), 1614; https://doi.org/10.3390/e24111614 - 5 Nov 2022
Cited by 1 | Viewed by 2125
Abstract
In a previous work published by the authors in 2020, a novel concept of light confinement in a microcavity was introduced which is based on successive perfect transmissions at Brewster’s angle. Hence, a new class of open billiards was designed with star-shaped microcavities [...] Read more.
In a previous work published by the authors in 2020, a novel concept of light confinement in a microcavity was introduced which is based on successive perfect transmissions at Brewster’s angle. Hence, a new class of open billiards was designed with star-shaped microcavities where rays propagate on orbits that leave and re-enter the cavity. In this article, we investigate the ray–wave correspondence in microstar cavities. An unintuitive difference between clockwise and counterclockwise propagation is revealed which is traced back to nonlinear resonance chains in phase space. Full article
Show Figures

Figure 1

Back to TopTop