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Abstract: In a previous work published by the authors in 2020, a novel concept of light confinement
in a microcavity was introduced which is based on successive perfect transmissions at Brewster’s
angle. Hence, a new class of open billiards was designed with star-shaped microcavities where rays
propagate on orbits that leave and re-enter the cavity. In this article, we investigate the ray–wave cor-
respondence in microstar cavities. An unintuitive difference between clockwise and counterclockwise
propagation is revealed which is traced back to nonlinear resonance chains in phase space.
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1. Introduction

Optical microcavities are fascinating systems to confine light on a very small scale [1,2].
Traditional whispering-gallery cavities rely on successive total internal reflections at the
cavity’s dielectric interface which prevent a ray from leaving the cavity. Correspond-
ingly, long-lived whispering-gallery modes exist as solutions of Maxwell’s equations.
Such whispering-gallery cavities appear, e.g., as microdisks [3–6], microtoroid [7–9], mi-
crospheres [10], or microjet cavities [11]. They have attracted an immense amount of
research interest, e.g., for quantum chaos [12–15] or exceptional points in non-Hermitian
systems [16–20] and, additionally, offer a lot of applications, e.g., the generation of optical
frequency combs [21], as microlasers with directional emission [22–25], optical sensors for
nanoparticles [26–28] or rotating motion [29], or orbital angular momentum lasers [30].

In a former article [31], an alternative concept for light confinement was introduced
which is completely different from the traditional whispering-gallery design. The perfect
transmissions at Brewster’s angle are utilized such that a ray can leave (and reenter) the
cavity without partial back reflection. Thus, via successive transmissions through the
dielectric interface of the cavity, rays are guided along a periodic orbit without loss of
intensity. This idea can be implemented in a star-shaped cavity as shown in Figure 1a or in
Brewster-notched cavities [32].

In this article, we further investigate the ray–wave correspondence in the microstar
cavity. In particular we look at (asymmetric) deformed microstar cavities where the
formation of the modes is governed by the regular dynamics around an elliptical fixed
point in phase space. In the semiclassical regime, we observe modes localizing along the
regular structures in phase space, while this localization might be expected from quantum-
chaos theory ,we can also identify an unexpected difference between clockwise (CW) and
counterclockwise (CCW) propagation in the star cavity. In the previous literature, a general
imbalance of CW and CCW propagation due to asymmetric backscattering was discussed
for microcavities [19,33–35]. However, in this article, we study the difference pattern
between CW and CCW propagation that is due to a nonuniform loss across a resonance
chain. Therefore, the revealed mechanism is a general feature of open systems and not
restricted to asymmetric boundary deformations. In addition, a Frobenius–Perron operator
(FPO) formalism is used as a connection between ray dynamics and optical modes.

The paper is organized as follows. In Section 2, the ray dynamics of the microstar
cavity are issued with a special focus on the dynamics of CW and CCW propagation in
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phase space. The corresponding impacts on the wave dynamics are discussed in Section 3.
A conclusion is given in Section 4.

2. Ray Dynamics and Phase-Space Description for Microstar Cavities

A microstar is a quasi-two-dimensional cavity with homogeneous refractive index
n [31]. It is characterized by the number of spikes ν. In order to guide a ray via successive
transmissions at Brewster’s angle χB = arctan(1/n) along a closed orbit, both the refractive
index and the opening angle α of the spikes need to be adjusted as

n =
1 + sin(π/ν)

cos(π/ν)
(1)

α =
ν− 2

2ν
π. (2)

In the following, a microstar with ν = 9 spikes is considered with a refractive index
of n ≈ 1.43 and spike opening angle α = 70◦. The microstar with such a polygonal
shape supports a family of periodic orbits propagating without loss of intensity. However,
these periodic orbits are only marginally stable. A slight boundary deformation of the
microstar can be used to stabilize the dynamics around one central orbit as shown in
Figure 1a. In polar coordinates (r, φ), the boundary of the most right deformed spike can
be expressed as

r(φ) =
1

n sin(φ) + cos(φ)
− ε1φ

(
φ− π

ν

)
for φ ∈ [0, π/ν] (3)

r(φ) =
1

n sin(φ) + cos(φ)
+ ε2φ

(
φ + π

ν

)
for φ ∈ [−π/ν, 0] (4)

with ε1 (ε2) being the deformation parameter of the upper (lower) segment of the spike.
Thus, the boundary of the deformed microstar is given by periodic continuation. Choosing
ε1 6= ε2 allows for an asymmetric boundary deformation without a mirror reflection
symmetry of the cavity.

The ray dynamics in the microstar are conveniently expressed in a Poincaré phase-
space section, in the following phase space for short, which is introduced in Figure 1.
Whenever a ray propagating along the spikes is passing the abscissa, its position x > 0
and the transversal momentum p = sin θ are recorded. For a microstar cavity without
deformed boundary, i.e., ε1 = ε2 = 0, a family of marginally stable orbits exists at p = 0,
whereas in the deformed case, an elliptical fixed point with a region of regular dynamics
can be achieved. For a boundary deformation with a mirror-reflection symmetry (ε1 = ε2),
the fixed point is either at p = 0 or occurs pairwise at ±|p|. Contrary, for an asymmetric
deformation (ε1 6= ε2), a single elliptical fixed point can occur at a finite nonzero momentum,
as in Figure 1c with (ε1, ε2) = (0.76, 1.2). For this deformation, a 5:1 resonance chain exists
in the regular region, which is of further interest below. In comparison, the deformation
parameters (ε1, ε2) = (0.78, 1.212) lead to an island of regular dynamics with a similar
shape but without a (macroscopic) resonance chain, see Figure 1d.

Note that the phase space represents CCW propagating rays. The corresponding rays
propagating in CW direction are given by time reversal of the (geometrical) dynamics.
For the phase-space variable p describing the momentum along the x-axis, this relates to
a change in the sign, cf. Figure 1b. A mirror reflection, however, would not change the
sign of p. Therefore, even in a cavity with a mirror-reflection symmetry, CW and CCW
dynamics can have differences, namely in the direction along the symmetry line.
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Figure 1. In (a), a microstar cavity with ν = 9 asymmetric spikes is shown as a black curve. The simple
periodic orbit is shown by the green curve. In (b), a magnification of one spike is shown. Propagation
in CCW (CW) direction is illustrated by red (blue) arrows. Figure (c) shows a phase-space portrait
of the microstar with deformation parameters (ε1, ε2) = (0.76, 1.2), as in (a,b). The simple periodic
orbit is shown as a green dot. A period-5 orbit is shown as magenta dots. (d) Phase-space portrait for
deformation parameters (ε1, ε2) = (0.78, 1.212).

In the following, we analyze the difference between CW and CCW propagation.
Therefore, initial conditions (x0, p0) on a uniform grid in phase space with unit intensity
I0 = 1 are iterated Nturns turns in CW and in CCW direction. The remaining fractions of
the intensity ICCW in CCW direction are shown in Figure 2a–d for Nturns = 1, 15, 50, 100,
respectively. As can be seen, the loss introduced by partial back-reflections from Fresnel
formulas is not uniform in the regular region, while the central fixed point suffers almost
no loss due to Brewster-angle transmissions, the border of the regular region has more loss,
which results in a loss gradient over the resonance chain. A consequence is a distortion
of the intensity pattern, which can be seen in Figure 2b,c. This distortion is different for
both propagation directions, resulting in a remarkable difference ICCW − ICW around the
resonance chain; see Figure 2e–h. Note that the effect becomes considerably weaker for
long times where the only remaining intensity is centered around the central fixed point.
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Figure 2. The intensity distribution (x0, p0, ICCW) of rays with initial conditions (x0, p0, I0 = 1) after
1, 15, 50, 100 turns in CCW direction is shown in (a–d). Correspondingly, (e–h) show the distribution
(x0, p0, ICCW − ICW) of the difference between propagation in CCW and CW direction. Note the
adjusted scale in the colormap for (e–h).
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Intuitively, the difference between both propagation directions can be understood by
analyzing the dynamics around the resonance chain, as shown in Figure 3. Focusing on
one unstable orbit of the resonance chain (see red dot in Figure 3), the dynamics on the left
side push the orbits closer to the center of the regular region, whereas on the right side, the
orbits are pushed away from the regular region’s center. Hence, orbits on the left side of
the unstable orbit will suffer less loss then orbits on the right side in the next iterations.
This behavior is inverted when the dynamics are reversed from CCW to CW, which leads
to the characteristic pattern of the intensity difference in Figure 2f–h.

0.75 0.89
−0.06

0.00

0.07

x/R

p

0 50 25

Figure 3. Magnification of the phase-space portrait from Figure 1c around the 5:1 resonance chain.
Iterations for selected (nonperiodic) orbits are shown as dots colored from black to orange. The un-
stable period-5 orbit is represented by dots with a cyclic colormap. The arrows illustrate the dy-
namics around one of the unstable fixed points. The deformation parameters of the microstar are
(ε1, ε2) = (0.76, 1.2).

For comparison, in Figure 4, the system without (macroscopic) resonance chain is
investigated. Note that here the difference between intensities ICCW and ICW is much
weaker and not structured in phase space.
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Figure 4. Similar as in Figure 2, (a–d) show the intensity distributions (x0, p0, ICCW) and (e–h) show
the distributions (x0, p0, ICCW− ICW), but for deformation parameters (ε1, ε2) = (0.78, 1.212), where no
macroscopic resonance chain occurs in the phase space. Note the adjusted scale in the colormap for (e–h).

Frobenius–Perron Operator

The Frobenius–Perron operator (FPO) describes the evolution of density (intensity)
distributions in phase space [36]. It has been used for, e.g., maps [37–41], billiard sys-
tems [37], and the asymmetric backscattering in deformed microcavities [42]. Here, the aim
is to construct classical intensity eigenstates for CCW and CW propagation in the de-
formed microstar via the FPO. For this purpose, Ulam’s method [43] is used to construct
a matrix approximation F of the FPO as follows. The part of the phase space between
x ∈ [r(φ/ν), r(0)] and p ∈ [−0.2, 0.2] covering the regular island is divided into a lattice of
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N × N uniform rectangular cells. In the cell i, random initial conditions with total intensity
Ii are iterated once in (C)CW direction. The transferred intensity I f to the phase-space cell f

is then recorded. Thus, the two N2 × N2 matrices with the elements F (C)CW
f i = I f /Ii are an

approximation for the intensity transport in CW and CCW direction, respectively. As such,
the eigenvalues are inside the unit circle, as shown in Figure 5a,b. Of special interest are the
eigenstates of the FPO with the eigenvalue of largest magnitude, as they represent states
with a long lifetime. For the system with a resonance chain, these long-lived eigenstates for
(C)CW propagation are shown in Figure 5c–k, in addition to their differences. As it can
be seen, the localization of the eigenstates around the central fixed point depends on the
fineness of the discretization given by N. This is consistent with the previous literature on
FPO eigenstates of maps with a mixed phase space [39,44]. For an infinite discretization,
the intensity is localized on the stable periodic orbit, which is a single point in phase space.
However, for a more rough discretization, i.e., N . 200, the eigenstates extend over the
resonance chain leading to a local intensity distortion, which is different for CW and CCW
eigenstates. Consequently, the difference between CW and CCW eigenstates is significant
around the resonance chain and consistent with the ray dynamics shown in Figure 2f,g.
In particular, the pattern with alternating preference of CW or CCW propagation along the
stable and unstable points of the resonance chain is visible.
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Figure 5. (a) The 10,000 largest-magnitude eigenvalues λ of the FPO with N = 200 are shown in the
complex plane. Orange squares (blue crosses) represent the eigenvalues of the CCW (CW) FPO. Note
that they are often on top of each other. (b) Shows a magnification of (a) around unity. (c–e) show the
eigenstates corresponding to the eigenvalue of the largest modulus for CCW direction, CW direction,
and the difference between both eigenstates for N = 100. The same sequence is shown in (f–h) for
N = 200 and in (i–k) for N = 400.



Entropy 2022, 24, 1614 8 of 17

Note that the shown difference pattern between CW and CCW propagation is not due
to an asymmetry of the cavity’s boundary. In fact, for deformation parameters ε1 = ε2 =
0.98, the microstar has a mirror-reflection symmetry, a similar 5:1 resonance chain in the
phase space, and a similar alternating pattern of the eigenstate difference (not shown).

In Figure 6, the eigenstates corresponding to the second, third, and fourth eigenvalues
next to unity are shown. As such an eigenstate has positive and negative parts, it does
not represent a proper intensity distribution by itself. However, for the dynamics of an
arbitrary (positive) phase-space intensity on intermediate timescales, these eigenstates still
provide useful information. Especially, for the second (Figure 6a,b) and fourth (Figure 6e,f)
eigenstates, the chirality around the resonance chain as well as the difference between CW
and CCW propagation can be seen clearly.

−0.15

0.00

0.15

p

(a)CCW 2 (b)CW 2

−0.15

0.00

0.15

p

(c) CCW 3 (d) CW 3

0.7 1.0
−0.15

0.00

0.15

x/R

p

(e) CCW 4

0.7 1.0x/R

(f) CW 4

Figure 6. Eigenstates of the FPO (N = 200) with (a,b) second, (c,d) third, and (e,f) fourth eigenvalues
next to unity. The left (right) panel shows the eigenstates for CCW (CW) propagation.

For a comparison, the eigenvalues and eigenstates of the FPO for the system without
a resonance chain are shown in Figure 7. The eigenstates also localize at the center of
the regular region, but they do not show a significant chiral behavior, i.e., the intensity
distribution along the regular orbits is uniform.
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Figure 7. (a) Eigenvalues close to unity of the FPO (N = 200) for the system without a resonance
chain characterized by (ε1, ε2) = (0.78, 1.212) (cf. Figure 4). (b) Eigenstate of the FPO for the
CCW dynamics with largest-modulus eigenvalue. (c) Difference between CCW and CW eigenstate.
(d–f) Next eigenstates of the FPO in CCW direction with eigenvalues close to unity.

Note that in contrast to ref. [42], here, the true-time mapping is not included in the
FPO. However, this incorporation of different time scales for the iteration is not relevant
here, as the rays propagating through the spikes of the microstar have almost the same
optical path length regardless of whether they propagate with a large or small radius.

3. Wave Dynamics

In this section, the wave dynamics of the microstar are analyzed with a focus on the
semiclassical regime and the difference between CW and CCW propagation. For quasi-two-
dimensional microcavities, Maxwell’s equations reduce to the scalar mode Equation [45][

∆ + n2k2
]
ψ = 0 (5)

where k = ω/c is the complex frequency which determines the Q-factor (lifetime) of
a mode via Q = −Re k/(2Im k). To utilize Brewster’s angle, here, transverse electrical
polarization is chosen such that the wave function ψ represents the magnetic field as
~H = (0, 0, Re [ψe−iωt]). Hence, along the cavities interface ψ, and its scaled normal deriva-
tive n−2∂~vψ are continuous. In addition, ψ is required to fulfill Sommerfeld’s outgoing
wave condition. For the numerical calculation of the long-lived modes in the microstar,
the boundary element method [46] and FEM software COMSOL [47] are used. In Figure 8,
the long-lived modes in the complex frequency plane in the semiclassical regime with
350 ≤ Re kR ≤ 600 are shown. As in the wave regime discussed in ref. [31], the most
long-lived mode localizes along the stable periodic orbit passing through the spikes of the
microstar; see Figure 9d. However, additional long-lived modes exist in the semiclassical
regime that also pass through the spikes but have more intensity maxima in radial direc-
tion; see Figure 9a–c. Thus, a classification of these modes with a radial mode number l
is suitable.
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Figure 8. Dimensionless frequencies kR of the long-lived modes in the microstar cavity that can be
classified by their mode number in radial direction by (blue) l = 1, (red) l = 2, (green) l = 3, (black)
l = 4, (yellow) l = 5, and (cyan) l = 6. The gray line indicates the frequency of the modes shown in
Figure 9.
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Figure 9. (a–d) shows the intensity pattern of the modes with radial mode number l = 4 to l = 1 and
Re kR ≈ 404 (see gray line in Figure 8). (e–h) represents the Husimi projection of the correspond-
ing mode.
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To compare the wave and ray dynamics in phase space, the Husimi function
H(x, p; ψ, ∂νψ) of a mode ψ is used. Here, we adapt the boundary Husimi function [48] to
the phase space taken along the x-axis (see Figure 1). Thus, for x ∈ [0.5R, 1.1R], the Husimi
function (for CCW propagation) is constructed via

H(x, p; ψ, ∂νψ) =
1
N

∣∣∣∣kFhψ(x, p) +
i
F

h∂νψ(x, p)
∣∣∣∣2 (6)

where F =
√

n
√

1− p2 and σ =
√

R/(nk). The functions hψ and h∂νψ are defined via an
overlap with a Gaussian wave packet with

h f (x, p) =
∫ xmax

xmin

ζ(t; x, p) f (t) dt (7)

ζ(t; x, p) = exp
(
(x− t)2

2σ2 − ipt
)

. (8)

The normalization constant N in Equation (6) is chosen such that maxx,pH = 1. Note
that for the magnetic field, the normal derivative along the x-axis can be computed via
∂νψ = ∂y Hz = −iωε0εrEx.

In Figure 9e–h, the Husimi functions of the corresponding modes are shown in the
right panel. As an expected result, the Husimi function of the most long-lived mode
localizes in the center of the regular island, see Figure 9h, with a maximum at the finite
momentum p ≈ 0.01, which nicely reflects the stable periodic orbit. Furthermore, as an
expected result, the modes with higher radial mode numbers l have their Husimi functions
localized on outer tori of the regular island. Hence, these states can be seen as higher-order
quantized states on the regular region. However, in this regime of Re kR ≈ 404, the modes
cannot localize on the smaller sub-islands of the resonance chain itself. Consequently,
the Husimi functions of the related modes interpolate through the resonance chain.

To verify the different intensity distortion for CCW and CW propagation, a few
individual modes with a larger dimensionless frequency Re kR > 1200 are calculated.
Then, for a mode, the Husimi function for CCW propagation H(x, p; ψ, ∂νψ) and the
corresponding Husimi function for CW propagationH(x,−p; ψ,−∂νψ) are calculated to
obtain the difference.

I(x, p; ψ) = H(x, p; ψ, ∂νψ)−H(x,−p; ψ,−∂νψ). (9)

Note that in Equation (9), each Husimi function is normalized as discussed above. Hence,
a preferred sense of rotation in the mode ψ does not impact the difference I(x, p; ψ).
In Figure 10a–i, the Husimi function and the difference I(x, p; ψ) are shown for the long-
lived modes in the microstar with a resonance chain. It is remarkable that over the range
of kR ≈ 1200, kR ≈ 1280 and kR ≈ 1360, each mode and its partner mode with a quasi-
degenerate frequency show almost the same pattern in I(x, p; ψ). This pattern is organized
around the stable and unstable fixed point of the resonance chain and in a very good
agreement with the pattern of the FPO eigenstates, e.g., in Figure 5e.

To highlight the importance of the resonance chain for this phenomenon, a mode pair
in the microstar without macroscopic resonance chain is shown in Figure 10j–l. Already
within the mode pair, the pattern I(x, p; ψ) is different and not organized around an
obvious phase-space structure.

A simplified model system that explains the effect in an open wave (quantum) system
is discussed in the Appendix A.
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Figure 10. (a) Husimi function for CCW propagation, (b) difference I(x, p; ψ) between Husimi
functions for CCW and CW propagation, see Equation (9). (c) Same as (b) but for a partner mode
with almost the same frequency kR as in (b). The panels (d–i) follow the same sequence as (a,b)
but for modes with different frequency kR in the same system given by deformation parameters
(ε1, ε2) = (0.76, 1.2). Modes for the microstar given by (ε1, ε2) = (0.78, 1.212) are shown in (j–l).

4. Conclusions

In this article, we discussed the ray–wave correspondence in microstar cavities.
From the ray dynamics, a (asymmetric) boundary deformation is used to manipulate
the light around a periodic orbit with a regular island in phase space. Correspondingly,
in the semiclassical regime, optical modes localize hierarchically on the regular island.
Depending on the deformation of the microstar resonance, chains might appear in the
regular island. Since the intensity loss is not uniform in the regular region, those resonance
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chains have an unusual effect on the dynamics. The propagation in CW and CCW direction
shows an intensity distortion with a pattern that organizes along the resonance chain. This
distortion is explained by the ray dynamics, and therefore manifests in the eigenstates of
the FPO. Furthermore, the difference between CW and CCW propagation is revealed in the
Husimi functions of the optical modes in the semiclassical regime.

Such an interplay between nonuniform loss and nonlinear dynamics is a rather general
effect, as it can also be observed in a simple quantum model system. Hence, the effect
is not restricted to microstar cavities. However, microstar cavities are ideal systems to
study such dynamics, as a nontrivial connection between forward and backward dynamics
in time manifests naturally in terms of CW and CCW propagation. Therefore, we be-
lieve our studies highlight microstar cavities as an interesting class of systems to unveil
novel phenomena.
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Appendix A. Difference in Forward and Backward Dynamics in a Generalized
Pendulum Model

In this appendix, a simple model system is constructed to illustrate the interplay
between a resonance chain and a loss gradient to cause a difference between two directions
of dynamical propagation. In the microstar cavity, such two directions are given naturally
by CW and CCW propagation. In the simplified one-dimensional model, the two directions
are given by forward and backward propagation in time under Hamiltonian dynamics.
The Hamiltonian is given by a generalized pendulum or normal form ansatz for a r:s
resonance chain as [49–51]

Hr:s(θ, I) = H0(I) + 2Vr:s

(
I

Ir:s

) r
2

cos(rθ). (A1)

Here, I ≥ 0 and θ ∈ [0, 2π] are action-angle variables of the unperturbed part
H0(I) = (I − Ir:s)2/(2Mr:s). The parameters are fixed to (Ir:s, Mr:s, Vr:s) = (0.8, 1, 0.005)
and r = 3. Using a canonical transformation

M : (θ, I) 7→ (Q, P) = (
√

2I cos θ,−
√

2I sin θ), (A2)

the Hamiltonian given in the coordinates (θ, I) can be related to a regular island in the
phase space (Q, P) with an elliptical fixed point at the origin and a resonance chain around
it; see Figure A1a,b.

Next, the Hamiltonian (A1) is quantized. Since the angle coordinate θ is 2π-periodic,
the action eigenstates |In〉 are a discrete basis of the Hilbert space with In = h̄(n + 1/2).
Thus, the Hamiltonian (A1) has the matrix elements [52,53]

〈Im|Hr:s|In〉 =
(In − Ir:s)2

2Mr:s
δnm + Vr:s

(
h̄

Ir:s

) r
2
(√

n!
(n− r)!

δm,n−r +

√
(n + r)!

n!
δm,n+r

)
(A3)
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and is therefore represented as an infinite matrix. In the numerical simulations, the reduced
Planck’s constant is set to h̄ = 0.3, and a cutoff for the action indices at Nmax = 90 is used.
Hence, the (forward) time evolution operator Ufor over one unit time step is given as a
finite matrix

Ufor = exp
(
− i

h̄
Hr:s

)
. (A4)

Correspondingly, the operator for the dynamic one unit time step backward in time yields

Uback = exp
(

i
h̄

Hr:s

)
. (A5)

Next, a nonuniform loss is introduced which has a gradient across the resonance chain
and therefore mimics the situation in the microstar cavity. In the basis of action eigenstates,
the loss is described by a reflection operatorR with matrix elements

R(In) = exp(−In/Ir:s) (A6)

in the diagonal, cf. Figure A1c. Hence, states with small In suffer less loss than the states
with large In. The dynamics of the open system is therefore described by the sub-unitary
time-evolution operator

U(open)
back, for = RUback, for. (A7)

Note that U(open)
back is not the time-reversed operator of U(open)

for as loss is not turned into
gain. This is consistent with the microstar cavity, where CCW is the time-reversed CW
propagation, but both directions of the dynamics suffer loss from radiation and partial

reflections. The eigenstates Ψ(open)
back, for of U(open)

back, for are calculated numerically. In particular,
we are interested in the eigenstates with eigenvalues of the largest magnitude. Due to the
loss profile, these eigenstates localize near I = 0. Their Husimi function can be calculated as

Hback, for(θ, I) =

∣∣∣∣∣Nmax

∑
n=0
〈α(θ, I)|In〉〈In|Ψ(open)

back, for〉
∣∣∣∣∣
2

(A8)

with α(θ, I) being a minimal uncertainty wave packet at the phase-space point (θ, I)
given by

〈α(θ, I)|In〉 = N (I) exp
(
− (In − I)2

4σ2 +
i
h̄
(In − I)θ

)
. (A9)

Here, σ =
√

h̄/2 is a parameter and N (I) is a normalization factor ensuring
‖α(θ, I)‖2 = ∑Nmax

n=0 |〈α(θ, I)|In〉|2 = 1. The Husimi function for the long-lived eigenstates
corresponding to the forward/backward dynamics are shown in Figure A1d,e. As it can be
seen in the magnifications, the Husimi function’s contour lines are curved sinusoidally with
a phase shift between forward and backward dynamics. Exactly this phase shift leads to the
oscillatory pattern for the difference between both Husimi functions, which is organized
along the stable and unstable fixed point of the resonance chain; see Figure A1f.
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Figure A1. (a,b) Contour lines of the generalized pendulum Hamiltonian in the phase-space (Q, P)
and (θ, I) are shown as black curves. The separatrix of the resonance chain is highlighted via a red
curve. (c) The reflectivity function which defines the loss profile is shown via a thick black curve.
Thin horizontal lines indicate the position of action eigenstates at In. (d,e) The Husimi function for

eigenstates of U(open)
for (U(open)

back ) localizing predominantly at I0 are shown via the red color gradient.
Contour lines of the Husimi function are shown as red curves in the magnification plots. (f) Difference
between the Husimi function for forward and backward propagation.
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