Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = micro optoelectromechanical system (MOEMS)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 7055 KiB  
Article
Microlens Array Fabrication by Using a Microshaper
by Meng-Ju Lin and Cheng Hao Wen
Micromachines 2021, 12(3), 244; https://doi.org/10.3390/mi12030244 - 28 Feb 2021
Cited by 5 | Viewed by 3140
Abstract
A simple, easy, inexpensive, and quick nonsilicon-based micromachining method was developed to manufacture a microlens array. The spherical surface of the microlens was machined using a microshaper mounted on a three-axis vertical computer numerical control (CNC) machine with cutter-path-planning. The results show the [...] Read more.
A simple, easy, inexpensive, and quick nonsilicon-based micromachining method was developed to manufacture a microlens array. The spherical surface of the microlens was machined using a microshaper mounted on a three-axis vertical computer numerical control (CNC) machine with cutter-path-planning. The results show the machined profiles of microlens agree well with designed profiles. The focus ability of the machined microlens array was verified. The designed and measured focal lengths have average 1.5% error. The results revealed that the focal lengths of micro lens agreed with the designed values. A moderate roughness of microlens surface is obtained by simply polishing. The roughness of the lens surface is 43 nm in feed direction (x-direction) and 56 nm in path interval direction (y-direction). It shows the simple, scalable, and reproducible method to manufacture microlenses by microshaper with cutter-path-planning is feasible. Full article
Show Figures

Figure 1

2 pages, 3092 KiB  
Correction
Correction: Shen, X. et al. Research on the Disc Sensitive Structure of a Micro Optoelectromechanical System (MOEMS) Resonator Gyroscope. Micromachines, 2019, 10, 264
by Xiang Shen, Liye Zhao and Dunzhu Xia
Micromachines 2019, 10(5), 328; https://doi.org/10.3390/mi10050328 - 16 May 2019
Viewed by 2601
Abstract
In the published paper [...] Full article
(This article belongs to the Special Issue MEMS/NEMS Sensors: Fabrication and Application, Volume II)
Show Figures

Figure 15

22 pages, 13896 KiB  
Article
Research on the Disc Sensitive Structure of a Micro Optoelectromechanical System (MOEMS) Resonator Gyroscope
by Xiang Shen, Liye Zhao and Dunzhu Xia
Micromachines 2019, 10(4), 264; https://doi.org/10.3390/mi10040264 - 19 Apr 2019
Cited by 15 | Viewed by 4165 | Correction
Abstract
A micro optoelectromechanical system (MOEMS) resonator gyroscope based on a waveguide micro-ring resonator was proposed. This sensor was operated by measuring the shift of the transmission spectrum. Modal analysis was carried out for the disc sensitive structure of the MOEMS resonator gyroscope (MOEMS-RG). [...] Read more.
A micro optoelectromechanical system (MOEMS) resonator gyroscope based on a waveguide micro-ring resonator was proposed. This sensor was operated by measuring the shift of the transmission spectrum. Modal analysis was carried out for the disc sensitive structure of the MOEMS resonator gyroscope (MOEMS-RG). We deduced the equations between the equivalent stiffness and voltage of each tuning electrode and the modal parameters. A comprehensive investigation of the influences of the structure parameters on the sensitivity noise of the MOEMS-RG is presented in this paper. The mechanical sensitivity and transducer sensitivities of the MOEMS-RG, with varying structural parameters, are calculated based on the finite-element method. Frequency response test and the fiber optic spectrometer displacement test were implemented to verify the reliability of the model. Research results indicate that the resonant frequencies of the operating modes are tested to be 5768.407 Hz and 5771.116 Hz and the resonant wavelength change ΔX was 0.08 nm for 45° rotation angle. The resonant wavelength, which has a good linear response in working range, changes from −0.071 nm to 0.080 μm. The MOEMS-RG, with an optimized disc sensitive structure, can detect the deformation of the sensitive membrane effectively, and has a high sensitivity. This resonator shows very large meff, low f 0 , and very high Q. Therefore, this resonator can provide a small A R W B ( 0.09 ° / h ), which makes it a promising candidate for a low-cost, batch-fabricated, small size inertial-grade MOEMS gyroscope. The multi-objective optimization method could be expanded to include other objectives, constraints, or variables relevant to all kinds of gyroscopes or other microelectromechanical systems devices. Full article
(This article belongs to the Special Issue MEMS/NEMS Sensors: Fabrication and Application, Volume II)
Show Figures

Figure 1

Back to TopTop