Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline

Search Results (1)

Search Parameters:
Keywords = mezzanine rack

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 15759 KiB  
Article
Full-Scale Fire Experiment on Mezzanine Racks in Logistics Facilities
by Byeongheun Lee, Nam Jeon and Jeongki Min
Fire 2024, 7(9), 326; https://doi.org/10.3390/fire7090326 - 20 Sep 2024
Viewed by 1202
Abstract
The increased demand for contactless services has facilitated a rapid increase in logistics facilities. There are shorter distances between the shelf racks used in mezzansine racks in such facilities compared to standard racks and can store various items; however, research on fire safety [...] Read more.
The increased demand for contactless services has facilitated a rapid increase in logistics facilities. There are shorter distances between the shelf racks used in mezzansine racks in such facilities compared to standard racks and can store various items; however, research on fire safety related to this remains insufficient. In this study, we visited four logistics facilities with mezzanine racks and one logistics facility using shelf racks to investigate their fundamental characteristics. Considering the characteristics of logistics facilities that store various combustibles, a fire test was conducted using unit shelf racks with packaging materials, boxes, and expandable polystyrene (EPS). Shelf racks loaded with corrugated fiberboard, cardboard boxes, and EPS exhibited the highest fire risk and were set as combustibles inside the rack. Before the experiment, the radiative heat flux was measured by considering the spacing distances of mezzanine racks observed on-site. The most frequently measured range was 43.7–67.3 kW/m2 at 1.0–1.5 m. After beginning the fire experiment, when simulating mezzanine racks with aisle widths of 1.2–2.0 m, fire owing to radiative heat occurred within 5 min in the separated shelf racks. Based on the results, we estimate that the minimum separation distance required to prevent radiant heat-based fires between shelving racks inside a mezzanine is 3.2 m. These findings are expected to be utilized in fire prevention by increasing the understanding of the spread of fire in shelf racks. Full article
Show Figures

Figure 1

Back to TopTop