Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = metal-organic framework-carbon nanofiber composite electrode

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 6540 KiB  
Article
Preparation of Zeolitic Imidazolate Framework and Carbon Nanofiber Composites for Nitrofurazone Detection
by Haobo Wang, Subramanian Sakthinathan, Arjunan Karthi Keyan, Chung-Lun Yu, Satoshi Kameoka, Te-Wei Chiu and Karuppiah Nagaraj
Micro 2024, 4(1), 14-32; https://doi.org/10.3390/micro4010002 - 9 Jan 2024
Cited by 7 | Viewed by 2788
Abstract
Metal–organic frame (MOF) materials may have the advantages of a regular pore structure, large porosity, and large specific surface area, which could provide better catalytic activity, but they have some disadvantages in electrocatalysis. In contrast, carbon nanofibers (CNFs) prepared by electrospinning methods have [...] Read more.
Metal–organic frame (MOF) materials may have the advantages of a regular pore structure, large porosity, and large specific surface area, which could provide better catalytic activity, but they have some disadvantages in electrocatalysis. In contrast, carbon nanofibers (CNFs) prepared by electrospinning methods have good conductivity and stability. Therefore, this research aimed to generate MOF/CNFs composite materials to improve the electrochemical properties of MOF materials and apply them to the field of electrochemical sensing. This experiment was based on the preparation of straight unidirectional CNFs by an electrospinning method at 2000 RPM. The original method of preparing zeolitic imidazolate frameworks (ZIF-8) was improved and ZIF-8 was uniformly dispersed on the surface of CNFs to form a ZIF-8/CNF composite with a fiber diameter of about 0.10 to 0.35 µm. The specific surface area of the CNFs was about 42.28 m2/g, while that of the ZIF-8/CNF composite was about 999.82 m2/g. The specific surface area of the ZIF-8/CNF composite was significantly larger than that of CNFs. The GCE/ZIF-8/CNF electrode had an excellent electrochemical reaction, with an oxidation peak at about 216 μA, which proved that the ZIF-8/CNF composite material would have good catalytic activity and excellent electrochemical properties for the detection of nitrofurazone compared to other modified electrodes. Full article
(This article belongs to the Section Microscale Materials Science)
Show Figures

Graphical abstract

12 pages, 3467 KiB  
Article
Electrochemical Selective and Simultaneous Detection of Diclofenac and Ibuprofen in Aqueous Solution Using HKUST-1 Metal-Organic Framework-Carbon Nanofiber Composite Electrode
by Sorina Motoc, Florica Manea, Adriana Iacob, Alberto Martinez-Joaristi, Jorge Gascon, Aniela Pop and Joop Schoonman
Sensors 2016, 16(10), 1719; https://doi.org/10.3390/s16101719 - 17 Oct 2016
Cited by 43 | Viewed by 7772
Abstract
In this study, the detection protocols for the individual, selective, and simultaneous determination of ibuprofen (IBP) and diclofenac (DCF) in aqueous solutions have been developed using HKUST-1 metal-organic framework-carbon nanofiber composite (HKUST-CNF) electrode. The morphological and electrical characterization of modified composite electrode prepared [...] Read more.
In this study, the detection protocols for the individual, selective, and simultaneous determination of ibuprofen (IBP) and diclofenac (DCF) in aqueous solutions have been developed using HKUST-1 metal-organic framework-carbon nanofiber composite (HKUST-CNF) electrode. The morphological and electrical characterization of modified composite electrode prepared by film casting was studied by scanning electronic microscopy and four-point-probe methods. The electrochemical characterization of the electrode by cyclic voltammetry (CV) was considered the reference basis for the optimization of the operating conditions for chronoamperometry (CA) and multiple-pulsed amperometry (MPA). This electrode exhibited the possibility to selectively detect IBP and DCF by simple switching the detection potential using CA. However, the MPA operated under optimum working conditions of four potential levels selected based on CV shape in relation to the potential value, pulse time, and potential level number, and order allowed the selective/simultaneous detection of IBP and DCF characterized by the enhanced detection performance. For this application, the HKUST-CNF electrode exhibited a good stability and reproducibility of the results was achieved. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

Back to TopTop