Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = metal-mesh touch panel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
8 pages, 2906 KiB  
Article
Transparent Conducting Film Fabricated by Metal Mesh Method with Ag and Cu@Ag Mixture Nanoparticle Pastes
by Hyun Min Nam, Duck Min Seo, Hyung Duk Yun, Gurunathan Thangavel, Lee Soon Park and Su Yong Nam
Metals 2017, 7(5), 176; https://doi.org/10.3390/met7050176 - 16 May 2017
Cited by 11 | Viewed by 7368
Abstract
Transparent conducting electrode film is highly desirable for application in touch screen panels (TSPs), flexible and wearable displays, sensors, and actuators. A sputtered film of indium tin oxide (ITO) shows high transmittance (90%) at low sheet resistance (50 Ω/cm2). However, ITO [...] Read more.
Transparent conducting electrode film is highly desirable for application in touch screen panels (TSPs), flexible and wearable displays, sensors, and actuators. A sputtered film of indium tin oxide (ITO) shows high transmittance (90%) at low sheet resistance (50 Ω/cm2). However, ITO films lack mechanical flexibility, especially under bending stress, and have limitation in application to large-area TSPs (over 15 inches) due to the trade-off in high transmittance and low sheet resistance properties. One promising solution is to use metal mesh-type transparent conducting film, especially for touch panel application. In this work, we investigated such inter-related issues as UV imprinting process to make a trench layer pattern, the synthesis of core-shell-type Ag and Cu@Ag composite nanoparticles and their paste formulation, the filling of Ag and Cu@Ag mixture nanoparticle paste to the trench layer, and touch panel fabrication processes. Full article
(This article belongs to the Special Issue Metal Matrix Composites)
Show Figures

Graphical abstract

7 pages, 11147 KiB  
Article
Ultrafast Laser Engraving Method to Fabricate Gravure Plate for Printed Metal-Mesh Touch Panel
by Weiyuan Chen, Wenlang Lai, Yuming Wang, Kaijun Wang, Shengyu Lin, Yuli Yen, Hong Hocheng and Tahsin Chou
Micromachines 2015, 6(10), 1483-1489; https://doi.org/10.3390/mi6101433 - 5 Oct 2015
Cited by 9 | Viewed by 8778
Abstract
In order to engrave gravure plate with fine lines structures, conventional art used lithography with dry/wet etching. Lithography with dry/wet etching method allows to engrave lines with smooth concave shape, but its disadvantages include difficulty in controlling aspect ratio, high and uniform in [...] Read more.
In order to engrave gravure plate with fine lines structures, conventional art used lithography with dry/wet etching. Lithography with dry/wet etching method allows to engrave lines with smooth concave shape, but its disadvantages include difficulty in controlling aspect ratio, high and uniform in large size process, substrate material limitation due to etching solution availability, and process complexity. We developed ultra-fast laser technology to directly engrave a stainless plate, a gravure plate, to be used for fabricating 23 in. metal-mesh touch panel by gravure offset printing process. The technology employs high energy pulse to ablate materials from a substrate. Because the ultra-fast laser pulse duration is shorter than the energy dissipation time between material lattices, there is no heating issue during the ablation process. Therefore, no volcano-type protrusion on the engraved line edges occurs, leading to good printing quality. After laser engraving, we then reduce surface roughness of the gravure plate using electro-polishing process. Diamond like carbon (DLC) coating layer is then added onto the surface to increase scratch resistance. We show that this procedure can fabricate gravure plate for gravure offset printing process with minimum printing linewidth 10.7 μm. A 23 in. metal-mesh pattern was printed using such gravure plate and fully functional touch panel was demonstrated in this work. Full article
(This article belongs to the Special Issue Laser Micromachining and Microfabrication)
Show Figures

Figure 1

Back to TopTop