Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = metabolic bistability

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1529 KB  
Article
Singlet Oxygen-Induced Mitochondrial Reset in Cancer: A Novel Approach for Ovarian Cancer Therapy
by Jorgelindo da Veiga Moreira, Laurent Schwartz and Mario Jolicoeur
Metabolites 2024, 14(12), 648; https://doi.org/10.3390/metabo14120648 - 21 Nov 2024
Viewed by 1411
Abstract
Background/Objectives: This study explores the generation of singlet oxygen (SO) through methylene blue (MB) activation as a metabolic intervention for ovarian cancer. We aimed to examine the role of SO in modulating mitochondrial function, cellular metabolism, and proliferation in ovarian cancer cell [...] Read more.
Background/Objectives: This study explores the generation of singlet oxygen (SO) through methylene blue (MB) activation as a metabolic intervention for ovarian cancer. We aimed to examine the role of SO in modulating mitochondrial function, cellular metabolism, and proliferation in ovarian cancer cell lines compared to control cells. Methods: The study utilized two ovarian cancer cell lines, OV1369-R2 and TOV1369, along with ARPE-19 control cells. Following MB treatment and light activation, mitochondrial function and ATP synthesis were assessed. Metabolomic analyses were performed to evaluate changes in central carbon metabolism, particularly focusing on markers of the Warburg effect. Results: TOV1369 cells exhibited a pronounced sensitivity to MB treatment, resulting in significant inhibition of ATP synthesis and reduced proliferation. Metabolomic analysis indicated that MB-induced SO production partially reversed the Warburg effect, suggesting a shift from glycolysis to oxidative phosphorylation. These effects were less pronounced in OV1369-R2 and ARPE-19 cells, correlating with their lower MB sensitivity. Conclusions: MB-generated SO selectively modulates mitochondrial energetics in ovarian cancer cells, driving a metabolic reorganization that curtails their proliferative capacity. This approach, leveraging the bacterial-like features of cancer metabolism, offers a promising therapeutic avenue to induce apoptosis and enhance treatment outcomes in ovarian cancer. Full article
(This article belongs to the Special Issue Cancer Metabolomics 2024)
Show Figures

Figure 1

52 pages, 4656 KB  
Review
A Travel through Landscapes of Seed Dormancy
by Alberto Gianinetti
Plants 2023, 12(23), 3963; https://doi.org/10.3390/plants12233963 - 24 Nov 2023
Cited by 10 | Viewed by 6265
Abstract
Basic features of seed dormancy are illustrated. The seed overall regulatory network governs seed metabolism and development, and it is coordinated by plant hormones. A functional model focused on abscisic acid (ABA), the foremost plant hormone in dormancy, is used as a framework [...] Read more.
Basic features of seed dormancy are illustrated. The seed overall regulatory network governs seed metabolism and development, and it is coordinated by plant hormones. A functional model focused on abscisic acid (ABA), the foremost plant hormone in dormancy, is used as a framework to critically discuss the literature. Gibberellins (GAs) have a main role in germination, and the ABA–GAs balance is a typical feature of the seed state: ABA dominates during dormancy and GAs prevail through germination. Thus, the literature converges toward envisaging the development switch between dormancy and germination as represented by the ABA/GAs ratio. The ABA–GAs antagonism is based on mutual inhibition, a feature of the regulatory network architecture that characterizes development trajectories based on a regulatory circuit with a bistable switch. Properties of such kind of regulatory architecture are introduced step by step, and it is shown that seed development—toward either dormancy or germination—is more properly represented by a tristable regulatory circuit, whose intermediate metastable states ultimately take one or the other development trajectory. Although the ABA/GAs ratio can conveniently represent the state of the seed overall regulatory network along the seed development trajectory, specific (unknown) dormancy factors are required to determine the development trajectory. The development landscape is shown to provide a well-suited representation of seed states travelling along developmental trajectories, particularly when the states are envisioned as regulatory circuits. Looking at seed dormancy in terms of regulatory circuits and development landscapes offers a valuable perspective to improve our understanding of this biological phenomenon. Full article
(This article belongs to the Collection Feature Papers in Plant Physiology and Metabolism)
Show Figures

Figure 1

26 pages, 1905 KB  
Review
Multistability in Macrophage Activation Pathways and Metabolic Implications
by Carsten Geiß, Elvira Salas, Jose Guevara-Coto, Anne Régnier-Vigouroux and Rodrigo A. Mora-Rodríguez
Cells 2022, 11(3), 404; https://doi.org/10.3390/cells11030404 - 25 Jan 2022
Cited by 51 | Viewed by 9619
Abstract
Macrophages are innate immune cells with a dynamic range of reversible activation states including the classical pro-inflammatory (M1) and alternative anti-inflammatory (M2) states. Deciphering how macrophages regulate their transition from one state to the other is key for a deeper understanding of inflammatory [...] Read more.
Macrophages are innate immune cells with a dynamic range of reversible activation states including the classical pro-inflammatory (M1) and alternative anti-inflammatory (M2) states. Deciphering how macrophages regulate their transition from one state to the other is key for a deeper understanding of inflammatory diseases and relevant therapies. Common regulatory motifs reported for macrophage transitions, such as positive or double-negative feedback loops, exhibit a switchlike behavior, suggesting the bistability of the system. In this review, we explore the evidence for multistability (including bistability) in macrophage activation pathways at four molecular levels. First, a decision-making module in signal transduction includes mutual inhibitory interactions between M1 (STAT1, NF-KB/p50-p65) and M2 (STAT3, NF-KB/p50-p50) signaling pathways. Second, a switchlike behavior at the gene expression level includes complex network motifs of transcription factors and miRNAs. Third, these changes impact metabolic gene expression, leading to switches in energy production, NADPH and ROS production, TCA cycle functionality, biosynthesis, and nitrogen metabolism. Fourth, metabolic changes are monitored by metabolic sensors coupled to AMPK and mTOR activity to provide stability by maintaining signals promoting M1 or M2 activation. In conclusion, we identify bistability hubs as promising therapeutic targets for reverting or blocking macrophage transitions through modulation of the metabolic environment. Full article
Show Figures

Figure 1

26 pages, 5888 KB  
Article
When Is a Reaction Network a Metabolism? Criteria for Simple Metabolisms That Support Growth and Division of Protocells
by Paul G. Higgs
Life 2021, 11(9), 966; https://doi.org/10.3390/life11090966 - 14 Sep 2021
Cited by 13 | Viewed by 4029
Abstract
With the aim of better understanding the nature of metabolism in the first cells and the relationship between the origin of life and the origin of metabolism, we propose three criteria that a chemical reaction system must satisfy in order to constitute a [...] Read more.
With the aim of better understanding the nature of metabolism in the first cells and the relationship between the origin of life and the origin of metabolism, we propose three criteria that a chemical reaction system must satisfy in order to constitute a metabolism that would be capable of sustaining growth and division of a protocell. (1) Biomolecules produced by the reaction system must be maintained at high concentration inside the cell while they remain at low or zero concentration outside. (2) The total solute concentration inside the cell must be higher than outside, so there is a positive osmotic pressure that drives cell growth. (3) The metabolic rate (i.e., the rate of mass throughput) must be higher inside the cell than outside. We give examples of small-molecule reaction systems that satisfy these criteria, and others which do not, firstly considering fixed-volume compartments, and secondly, lipid vesicles that can grow and divide. If the criteria are satisfied, and if a supply of lipid is available outside the cell, then continued growth of membrane surface area occurs alongside the increase in volume of the cell. If the metabolism synthesizes more lipid inside the cell, then the membrane surface area can increase proportionately faster than the cell volume, in which case cell division is possible. The three criteria can be satisfied if the reaction system is bistable, because different concentrations can exist inside and out while the rate constants of all the reactions are the same. If the reaction system is monostable, the criteria can only be satisfied if there is a reason why the rate constants are different inside and out (for example, the decay rates of biomolecules are faster outside, or the formation rates of biomolecules are slower outside). If this difference between inside and outside does not exist, a monostable reaction system cannot sustain cell growth and division. We show that a reaction system for template-directed RNA polymerization can satisfy the requirements for a metabolism, even if the small-molecule reactions that make the single nucleotides do not. Full article
Show Figures

Figure 1

14 pages, 2017 KB  
Article
The IDO Metabolic Trap Hypothesis for the Etiology of ME/CFS
by Alex A. Kashi, Ronald W. Davis and Robert D. Phair
Diagnostics 2019, 9(3), 82; https://doi.org/10.3390/diagnostics9030082 - 26 Jul 2019
Cited by 32 | Viewed by 35155
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating noncommunicable disease brandishing an enormous worldwide disease burden with some evidence of inherited genetic risk. Absence of measurable changes in patients’ standard blood work has necessitated ad hoc symptom-driven therapies and a dearth of mechanistic [...] Read more.
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating noncommunicable disease brandishing an enormous worldwide disease burden with some evidence of inherited genetic risk. Absence of measurable changes in patients’ standard blood work has necessitated ad hoc symptom-driven therapies and a dearth of mechanistic hypotheses regarding its etiology and possible cure. A new hypothesis, the indolamine-2,3-dioxygenase (IDO) metabolic trap, was developed and formulated as a mathematical model. The historical occurrence of ME/CFS outbreaks is a singular feature of the disease and implies that any predisposing genetic mutation must be common. A database search for common damaging mutations in human enzymes produces 208 hits, including IDO2 with four such mutations. Non-functional IDO2, combined with well-established substrate inhibition of IDO1 and kinetic asymmetry of the large neutral amino acid transporter, LAT1, yielded a mathematical model of tryptophan metabolism that displays both physiological and pathological steady-states. Escape from the pathological one requires an exogenous perturbation. This model also identifies a critical point in cytosolic tryptophan abundance beyond which descent into the pathological steady-state is inevitable. If, however, means can be discovered to return cytosolic tryptophan below the critical point, return to the normal physiological steady-state is assured. Testing this hypothesis for any cell type requires only labelled tryptophan, a means to measure cytosolic tryptophan and kynurenine, and the standard tools of tracer kinetics. Full article
(This article belongs to the Special Issue Biomedical Insights that Inform the Diagnosis of ME/CFS)
Show Figures

Figure 1

17 pages, 514 KB  
Article
Application of Parameter Optimization to Search for Oscillatory Mass-Action Networks Using Python
by Veronica L. Porubsky and Herbert M. Sauro
Processes 2019, 7(3), 163; https://doi.org/10.3390/pr7030163 - 18 Mar 2019
Cited by 5 | Viewed by 4781
Abstract
Biological systems can be described mathematically to model the dynamics of metabolic, protein, or gene-regulatory networks, but locating parameter regimes that induce a particular dynamic behavior can be challenging due to the vast parameter landscape, particularly in large models. In the current work, [...] Read more.
Biological systems can be described mathematically to model the dynamics of metabolic, protein, or gene-regulatory networks, but locating parameter regimes that induce a particular dynamic behavior can be challenging due to the vast parameter landscape, particularly in large models. In the current work, a Pythonic implementation of existing bifurcation objective functions, which reward systems that achieve a desired bifurcation behavior, is implemented to search for parameter regimes that permit oscillations or bistability. A differential evolution algorithm progressively approximates the specified bifurcation type while performing a global search of parameter space for a candidate with the best fitness. The user-friendly format facilitates integration with systems biology tools, as Python is a ubiquitous programming language. The bifurcation–evolution software is validated on published models from the BioModels Database and used to search populations of randomly-generated mass-action networks for oscillatory dynamics. Results of this search demonstrate the importance of reaction enrichment to provide flexibility and enable complex dynamic behaviors, and illustrate the role of negative feedback and time delays in generating oscillatory dynamics. Full article
(This article belongs to the Special Issue Methods in Computational Biology)
Show Figures

Graphical abstract

17 pages, 2371 KB  
Article
Systems-Level Feedbacks of NRF2 Controlling Autophagy upon Oxidative Stress Response
by Orsolya Kapuy, Diána Papp, Tibor Vellai, Gábor Bánhegyi and Tamás Korcsmáros
Antioxidants 2018, 7(3), 39; https://doi.org/10.3390/antiox7030039 - 5 Mar 2018
Cited by 64 | Viewed by 8326
Abstract
Although the primary role of autophagy-dependent cellular self-eating is cytoprotective upon various stress events (such as starvation, oxidative stress, and high temperatures), sustained autophagy might lead to cell death. A transcription factor called NRF2 (nuclear factor erythroid-related factor 2) seems to be essential [...] Read more.
Although the primary role of autophagy-dependent cellular self-eating is cytoprotective upon various stress events (such as starvation, oxidative stress, and high temperatures), sustained autophagy might lead to cell death. A transcription factor called NRF2 (nuclear factor erythroid-related factor 2) seems to be essential in maintaining cellular homeostasis in the presence of either reactive oxygen or nitrogen species generated by internal metabolism or external exposure. Accumulating experimental evidence reveals that oxidative stress also influences the balance of the 5′ AMP-activated protein kinase (AMPK)/rapamycin (mammalian kinase target of rapamycin or mTOR) signaling pathway, thereby inducing autophagy. Based on computational modeling here we propose that the regulatory triangle of AMPK, NRF2 and mTOR guaranties a precise oxidative stress response mechanism comprising of autophagy. We suggest that under conditions of oxidative stress, AMPK is crucial for autophagy induction via mTOR down-regulation, while NRF2 fine-tunes the process of autophagy according to the level of oxidative stress. We claim that the cellular oxidative stress response mechanism achieves an incoherently amplified negative feedback loop involving NRF2, mTOR and AMPK. The mTOR-NRF2 double negative feedback generates bistability, supporting the proper separation of two alternative steady states, called autophagy-dependent survival (at low stress) and cell death (at high stress). In addition, an AMPK-mTOR-NRF2 negative feedback loop suggests an oscillatory characteristic of autophagy upon prolonged intermediate levels of oxidative stress, resulting in new rounds of autophagy stimulation until the stress events cannot be dissolved. Our results indicate that AMPK-, NRF2- and mTOR-controlled autophagy induction provides a dynamic adaptation to altering environmental conditions, assuming their new frontier in biomedicine. Full article
(This article belongs to the Special Issue Oxidative Stress and Cancer: The Nrf2 Enigma)
Show Figures

Figure 1

37 pages, 2016 KB  
Article
Robustness in Regulatory Interaction Networks. A Generic Approach with Applications at Different Levels: Physiologic, Metabolic and Genetic
by Jacques Demongeot, Hedi Ben Amor, Adrien Elena, Pierre Gillois, Mathilde Noual and Sylvain Sené
Int. J. Mol. Sci. 2009, 10(10), 4437-4473; https://doi.org/10.3390/ijms10104437 - 19 Oct 2009
Cited by 25 | Viewed by 15461
Abstract
Regulatory interaction networks are often studied on their dynamical side (existence of attractors, study of their stability). We focus here also on their robustness, that is their ability to offer the same spatiotemporal patterns and to resist to external perturbations such as losses [...] Read more.
Regulatory interaction networks are often studied on their dynamical side (existence of attractors, study of their stability). We focus here also on their robustness, that is their ability to offer the same spatiotemporal patterns and to resist to external perturbations such as losses of nodes or edges in the networks interactions architecture, changes in their environmental boundary conditions as well as changes in the update schedule (or updating mode) of the states of their elements (e.g., if these elements are genes, their synchronous coexpression mode versus their sequential expression). We define the generic notions of boundary, core, and critical vertex or edge of the underlying interaction graph of the regulatory network, whose disappearance causes dramatic changes in the number and nature of attractors (e.g., passage from a bistable behaviour to a unique periodic regime) or in the range of their basins of stability. The dynamic transition of states will be presented in the framework of threshold Boolean automata rules. A panorama of applications at different levels will be given: brain and plant morphogenesis, bulbar cardio-respiratory regulation, glycolytic/oxidative metabolic coupling, and eventually cell cycle and feather morphogenesis genetic control. Full article
(This article belongs to the Special Issue Quantitative Modelling in Molecular System Bioenergetics)
Show Figures

Back to TopTop