Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = meta-polybenzimidazole

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3722 KiB  
Article
Supercapacitor Cell Performance with Bacterial Nanocellulose and Bacterial Nanocellulose/Polybenzimidazole Impregnated Membranes as Separator
by Hristo Penchev, Galia Ivanova, Venelin Hubenov, Ivanka Boyadzieva, Desislava Budurova, Filip Ublekov, Adriana Gigova and Antonia Stoyanova
Membranes 2025, 15(1), 12; https://doi.org/10.3390/membranes15010012 - 8 Jan 2025
Cited by 1 | Viewed by 1526
Abstract
Supercapacitors are advanced energy storage devices renowned for their rapid energy delivery and long operational lifespan, making them indispensable across various industries. Their relevance has grown in recent years due to the adoption of environmentally friendly materials. One such material is bacterial nanocellulose [...] Read more.
Supercapacitors are advanced energy storage devices renowned for their rapid energy delivery and long operational lifespan, making them indispensable across various industries. Their relevance has grown in recent years due to the adoption of environmentally friendly materials. One such material is bacterial nanocellulose (BNC), produced entirely from microbial sources, offering sustainability and a bioprocess-driven synthesis. In this study, BNC was synthesized using a symbiotic microbial community. After production and purification, pristine BNC membranes, with an average thickness of 80 microns, were impregnated with an alkali-alcohol meta-polybenzimidazole (PBI) solution. This process yielded hybrid BNC/PBI membranes with improved ion-transport properties. The BNC membranes were then doped with a 6 M KOH solution, to enhance OH conductivity, and characterized using optical microscopy, ATR FT-IR, XRD, CVT, BET analysis, and impedance spectroscopy. Both BNC and BNC/PBI membranes were tested as separators in laboratory-scale symmetric supercapacitor cells, with performance compared to a commercial Viledon® separator. The supercapacitors employing BNC membranes exhibited high specific capacitance and excellent cycling stability, retaining performance over 10,000 charge/discharge cycles. These findings underscore the potential of BNC/KOH membranes for next-generation supercapacitor applications. Full article
(This article belongs to the Section Membrane Applications for Energy)
Show Figures

Figure 1

32 pages, 44965 KiB  
Article
Hybrid Cellulosic Substrates Impregnated with Meta-PBI-Stabilized Carbon Nanotubes/Plant Extract-Synthesized Zinc Oxide—Antibacterial and Photocatalytic Dye Degradation Study
by Hristo Penchev, Katerina Zaharieva, Silvia Dimova, Georgy Grancharov, Petar D. Petrov, Maria Shipochka, Ognian Dimitrov, Irina Lazarkevich, Stephan Engibarov and Rumyana Eneva
Nanomaterials 2024, 14(16), 1346; https://doi.org/10.3390/nano14161346 - 14 Aug 2024
Cited by 3 | Viewed by 1697
Abstract
Novel fibrous cellulosic substrates impregnated with meta-polybenzimidazole (PBI)-stabilized carbon nanotubes/zinc oxide with different weight content of ZnO and with the use of dimethylacetamide as dispersant media. The pristine ZnO nanoparticle powder was prepared by plant extract-mediated synthesis using Vaccinium vitis-idaea L. The green [...] Read more.
Novel fibrous cellulosic substrates impregnated with meta-polybenzimidazole (PBI)-stabilized carbon nanotubes/zinc oxide with different weight content of ZnO and with the use of dimethylacetamide as dispersant media. The pristine ZnO nanoparticle powder was prepared by plant extract-mediated synthesis using Vaccinium vitis-idaea L. The green synthesized ZnO possesses an average crystallite size of 15 nm. The formation of agglomerates from ZnO NPs with size 250 nm–350 nm in the m-PBI@CNTs/ZnO was determined. The prepared materials were investigated by PXRD analysis, XPS, SEM, EDS, AFM, and TEM in order to establish the phase and surface composition, structure, and morphology of the hybrids. The potential of the synthesized hybrid composites to degrade methylene blue (MB) dye as a model contaminant in aqueous solutions under UV illumination was studied. The photocatalytic results show that in the course of the photocatalytic reaction, the m-PBI@CNTs/ZnO 1:3 photocatalyst leads to the highest degree of degradation of the methylene blue dye (67%) in comparison with the other two studied m-PBI@CNTs/ZnO 1:1 and 1:2 composites (48% and 41%). The antibacterial activity of ZnO nanoparticles and the hybrid CNT materials was evaluated by the RMDA and the dynamic contact method, respectively. The profound antibacterial effect of the m-PBI@CNTs/ZnO hybrids was monitored for 120 h of exposition in dark and UV illumination regimes. The photocatalytic property of ZnO nanoparticles significantly shortens the time for bactericidal action of the composites in both regimes. The m-PBI@CNTs/ZnO 1:2 combination achieved complete elimination of 5.105 CFU/mL E. coli cells after 10 min of UV irradiation. Full article
Show Figures

Figure 1

13 pages, 2401 KiB  
Article
Incorporation of Aramids into Polybenzimidazoles to Achieve Ultra-High Thermoresistance and Toughening Effects
by Xianzhu Zhong, Aniruddha Nag, Kenji Takada, Akinori Nakajima and Tatsuo Kaneko
Molecules 2024, 29(5), 1058; https://doi.org/10.3390/molecules29051058 - 28 Feb 2024
Cited by 2 | Viewed by 1547
Abstract
Polybenzimidazoles (PBIs) are recognized for their remarkable thermal stability due to their unique molecular structure, which is characterized by aromaticity and rigidity. Despite their remarkable thermal attributes, their tensile properties limit their application. To improve the mechanical performance of PBIs, we made a [...] Read more.
Polybenzimidazoles (PBIs) are recognized for their remarkable thermal stability due to their unique molecular structure, which is characterized by aromaticity and rigidity. Despite their remarkable thermal attributes, their tensile properties limit their application. To improve the mechanical performance of PBIs, we made a vital modification to their molecular backbone to improve their structural flexibility. Non-π-conjugated components were introduced into PBIs by grafting meta-polyamide (MA) and para-polyamide (PA) onto PBI backbones to form the copolymers PBI-co-MA and PBI-co-PA. The results indicated that the cooperation between MA and PA significantly enhanced mechanical strain and overall toughness. Furthermore, the appropriate incorporation of aromatic polyamide components (20 mol% for MA and 15% for PA) improved thermal degradation temperatures by more than 30 °C. By investigating the copolymerization of PBIs with MA and PA, we unraveled the intricate relationships between composition, molecular structure, and material performance. These findings advance copolymer design strategies and deepen the understanding of polymer materials, offering tailored solutions that address thermal and mechanical demands across applications. Full article
(This article belongs to the Special Issue Themed Issue Dedicated to Prof. Bernard Boutevin)
Show Figures

Graphical abstract

28 pages, 4049 KiB  
Review
Electrospinning of High-Performance Nanofibres: State of the Art and Insights into the Path Forward
by Jemma R. P. Forgie, Floriane Leclinche, Emilie Dréan and Patricia I. Dolez
Appl. Sci. 2023, 13(22), 12476; https://doi.org/10.3390/app132212476 - 18 Nov 2023
Cited by 10 | Viewed by 5151
Abstract
Nanofibrous membranes have gained interest for their small pore size, light weight, and excellent filtration. When produced from high-performance polymers, nanofibrous membranes also benefit from excellent mechanical properties, thermal resistance, and chemical resistance. Electrospinning is a common method of producing high-performance nanofibres. However, [...] Read more.
Nanofibrous membranes have gained interest for their small pore size, light weight, and excellent filtration. When produced from high-performance polymers, nanofibrous membranes also benefit from excellent mechanical properties, thermal resistance, and chemical resistance. Electrospinning is a common method of producing high-performance nanofibres. However, there are still major challenges with the dissolution and electrospinning of these polymers, as well as in the performance of the resulting nanofibres, which is often less than what would be expected from a conventional high-performance fibre. This review assesses the state of progress in the electrospinning of five high-performance fibres: meta-aramid (m-aramid), para-aramid (p-aramid), polyamide-imide (PAI), polybenzoxazole (PBO), and polybenzimidazole (PBI). Polymers that can be readily dissolved in organic solvents, such as m-aramid, PAI, and PBI, have been more widely researched for electrospinning compared to those that can only be spun from precursors or dissolved in non-volatile solvents. Major focuses within the literature include optimizing the electrospinning process and improving the mechanical performance of the nanofibres. This review demonstrates a clear need for more standardized characterization methods and consideration for the longevity of the nanofibrous membranes. Future research should also focus on scale-up methods of electrospinning so that the benefits of nanofibres made from high-performance polymers can be leveraged by the industry. Full article
(This article belongs to the Special Issue Advanced Manufacturing of Functional Fibers and Textiles)
Show Figures

Figure 1

17 pages, 21843 KiB  
Article
One-Step Formation of Reduced Graphene Oxide from Insulating Polymers Induced by Laser Writing Method
by Parand R. Riley, Pratik Joshi, Hristo Penchev, Jagdish Narayan and Roger J. Narayan
Crystals 2021, 11(11), 1308; https://doi.org/10.3390/cryst11111308 - 27 Oct 2021
Cited by 22 | Viewed by 6369
Abstract
Finding a low-cost and effective method at low temperatures for producing reduced graphene oxide (rGO) has been the focus of many efforts in the research community for almost two decades. Overall, rGO is a promising candidate for use in supercapacitors, batteries, biosensors, photovoltaic [...] Read more.
Finding a low-cost and effective method at low temperatures for producing reduced graphene oxide (rGO) has been the focus of many efforts in the research community for almost two decades. Overall, rGO is a promising candidate for use in supercapacitors, batteries, biosensors, photovoltaic devices, corrosion inhibitors, and optical devices. Herein, we report the formation of rGO from two electrically insulating polymers, polytetrafluoroethylene (PTFE) and meta-polybenzimidazole fiber (m-PBI), using an excimer pulsed laser annealing (PLA) method. The results from X-ray diffraction, scanning electron microscopy, electron backscattered diffraction, Raman spectroscopy, and Fourier-transform infrared spectroscopy confirm the successful generation of rGO with the formation of a multilayered structure. We investigated the mechanisms for the transformation of PTFE and PBI into rGO. The PTFE transition occurs by both a photochemical mechanism and a photothermal mechanism. The transition of PBI is dominated by a photo-oxidation mechanism and stepwise thermal degradation. After degradation and degassing procedures, both the polymers leave behind free molten carbon with some oxygen and hydrogen content. The free molten carbon undergoes an undercooling process with a regrowth velocity (<4 m·s−1) that is necessary for the formation of rGO structures. This approach has the potential for use in creating future selective polymer-written electronics. Full article
(This article belongs to the Special Issue Confined Crystals, Quantum Dots, and Nano Crystals)
Show Figures

Graphical abstract

15 pages, 6068 KiB  
Article
Composite Polybenzimidazole Membrane with High Capacity Retention for Vanadium Redox Flow Batteries
by Jacobus C. Duburg, Kobra Azizi, Søren Primdahl, Hans Aage Hjuler, Elena Zanzola, Thomas J. Schmidt and Lorenz Gubler
Molecules 2021, 26(6), 1679; https://doi.org/10.3390/molecules26061679 - 17 Mar 2021
Cited by 22 | Viewed by 4355 | Correction
Abstract
Currently, energy storage technologies are becoming essential in the transition of replacing fossil fuels with more renewable electricity production means. Among storage technologies, redox flow batteries (RFBs) can represent a valid option due to their unique characteristic of decoupling energy storage from power [...] Read more.
Currently, energy storage technologies are becoming essential in the transition of replacing fossil fuels with more renewable electricity production means. Among storage technologies, redox flow batteries (RFBs) can represent a valid option due to their unique characteristic of decoupling energy storage from power output. To push RFBs further into the market, it is essential to include low-cost materials such as new generation membranes with low ohmic resistance, high transport selectivity, and long durability. This work proposes a composite membrane for vanadium RFBs and a method of preparation. The membrane was prepared starting from two polymers, meta-polybenzimidazole (6 μm) and porous polypropylene (30 μm), through a gluing approach by hot-pressing. In a vanadium RFB, the composite membrane exhibited a high energy efficiency (~84%) and discharge capacity (~90%) with a 99% capacity retention over 90 cycles at 120 mA·cm−2, exceeding commercial Nafion® NR212 (~82% efficiency, capacity drop from 90% to 40%) and Fumasep® FAP-450 (~76% efficiency, capacity drop from 80 to 65%). Full article
(This article belongs to the Special Issue Redox Flow Batteries: Developments and Applications)
Show Figures

Graphical abstract

14 pages, 3374 KiB  
Article
Phase Inversion-Induced Porous Polybenzimidazole Fuel Cell Membranes: An Efficient Architecture for High-Temperature Water-Free Proton Transport
by Sangrae Lee, Ki-Ho Nam, Kwangwon Seo, Gunhwi Kim and Haksoo Han
Polymers 2020, 12(7), 1604; https://doi.org/10.3390/polym12071604 - 19 Jul 2020
Cited by 24 | Viewed by 5755
Abstract
To cope with the demand for cleaner alternative energy, polymer electrolyte membrane fuel cells (PEMFCs) have received significant research attention owing to their high-power density, high fuel efficiency, and low polluting by-product. However, the water requirement of these cells has necessitated research on [...] Read more.
To cope with the demand for cleaner alternative energy, polymer electrolyte membrane fuel cells (PEMFCs) have received significant research attention owing to their high-power density, high fuel efficiency, and low polluting by-product. However, the water requirement of these cells has necessitated research on systems that do not require water and/or use other mediums with higher boiling points. In this work, a highly porous meta-polybenzimidazole (m-PBI) membrane was fabricated through the non-solvent induced phase inversion technique and thermal cross-linking for high-temperature PEMFC (HT-PEMFC) applications. Standard non-thermally treated porous membranes are susceptible to phosphoric acid (PA) even at low concentrations and are unsuitable as polymer electrolyte membranes (PEMs). With the porous structure of m-PBI membranes, higher PA uptake and minimal swelling, which is controlled via cross-linking, was achieved. In addition, the membranes exhibited partial asymmetrical morphology and are directly applicable to fuel cell systems without any further modifications. Membranes with insufficient cross-linking resulted in an unstable performance in HT-PEMFC environments. By optimizing thermal treatment, a high-performance membrane with limited swelling and improved proton conductivity was achieved. Finally, the m-PBI membrane exhibited enhanced acid retention, proton conductivity, and fuel cell performance. Full article
(This article belongs to the Special Issue Polymer Electrolyte Membrane Fuel Cell)
Show Figures

Graphical abstract

11 pages, 2498 KiB  
Article
KOH-doped Porous Polybenzimidazole Membranes for Solid Alkaline Fuel Cells
by Jong-Hyeok Park and Jin-Soo Park
Energies 2020, 13(3), 525; https://doi.org/10.3390/en13030525 - 21 Jan 2020
Cited by 14 | Viewed by 3988
Abstract
In this study the preparation and properties of potassium hydroxide-doped meta-polybenzimidazole membranes with 20–30 μm thickness are reported as anion conducting polymer electrolyte for application in fuel cells. Dibutyl phthalate as porogen forms an asymmetrically porous structure of membranes along thickness direction. One [...] Read more.
In this study the preparation and properties of potassium hydroxide-doped meta-polybenzimidazole membranes with 20–30 μm thickness are reported as anion conducting polymer electrolyte for application in fuel cells. Dibutyl phthalate as porogen forms an asymmetrically porous structure of membranes along thickness direction. One side of the membranes has a dense skin layer surface with 1.5–15 μm and the other side of the membranes has a porous one. It demonstrated that ion conductivity of the potassium hydroxide-doped porous membrane with the porogen content of 47 wt.% (0.090 S cm−1), is 1.4 times higher than the potassium hydroxide-doped dense membrane (0.065 S cm−1). This is because the porous membrane allows 1.4 times higher potassium hydroxide uptake than dense membranes. Tensile strength and elongation studies confirm that doping by simply immersing membranes in potassium hydroxide solutions was sufficient to fill in the inner pores. The membrane-electrode assembly using the asymmetrically porous membrane with 1.4 times higher ionic conductivity than the dense non-doped polybenzimidazole (mPBI) membrane showed 1.25 times higher peak power density. Full article
Show Figures

Graphical abstract

Back to TopTop