Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = mercuric (II) ion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3936 KiB  
Article
Microporous Oxide-Based Surface-Enhanced Raman Scattering Film for Quadrillionth Detection of Mercury Ion (II)
by Sripansuang Tangsuwanjinda, Yu-Yu Chen, Ching-Hsiang Lai, Guan-Ting Jhou, Yu-Wei Chiang and Hsin-Ming Cheng
Processes 2021, 9(5), 794; https://doi.org/10.3390/pr9050794 - 30 Apr 2021
Cited by 5 | Viewed by 2790
Abstract
A variety of chemical sensing materials and procedures for conveniently detecting mercuric ion (II) (Hg2+) have been extensively explored. The detection challenges for accomplishing a simple, fast, and low investment procedure at the ultrasensitive level are ongoing. Herein we report a [...] Read more.
A variety of chemical sensing materials and procedures for conveniently detecting mercuric ion (II) (Hg2+) have been extensively explored. The detection challenges for accomplishing a simple, fast, and low investment procedure at the ultrasensitive level are ongoing. Herein we report a quadrillionth level for detecting Hg2+ by the surface-enhanced Raman scattering (SERS) technique. There is an interaction of silver nanoparticles decorated on a zinc-oxide tetrapod structure and coated on FTO glass (Ag@ZnO-FTO) with an organic ligand. 4,4′-Dipyridyl (DPy) performed as being chemisorbed by Ag nanoparticles interacting with a pyridine ring to produce plasmonic hot spots for SERS. The morphology of the surface and porous structure of the tetrapod becomes the powerful platform for enhanced SERS performance of DPy detection. In the absence of the augmentative electrolyte, the enhancement factor for DPy is more than 107. The inhibiting of the aggregation between Ag and DPy was present following the appearance of Hg2+, demonstrated by the quenching of the SERS signal from the DPy molecules. The capability to reproduce and the selectivity of the sensing by DPy were both demonstrated. In addition, the applications for detecting Hg2+ in natural water and beverages were successfully detected. These results demonstrated the SERS sensors had the potential for detecting Hg2+ in practical use. Full article
(This article belongs to the Special Issue Synthesis, Characterization, and Application of Functional Materials)
Show Figures

Figure 1

14 pages, 4991 KiB  
Article
CuFe2O4/Polyaniline (PANI) Nanocomposite for the Hazard Mercuric Ion Removal: Synthesis, Characterization, and Adsorption Properties Study
by Saad S. M. Hassan, Ayman H. Kamel, Amr A. Hassan, Abd El-Galil E. Amr, Heba Abd El-Naby, Mohamed A. Al-Omar and Ahmed Y. A. Sayed
Molecules 2020, 25(12), 2721; https://doi.org/10.3390/molecules25122721 - 12 Jun 2020
Cited by 27 | Viewed by 3906
Abstract
Copper ferrite nano-particles (CuFe2O4) were synthesized, characterized, modified with polyaniline to form CuFe2O4/PANI nano-composite. They were used as new adsorbents for the removal of the hazardous mercuric ions from aqueous solutions. High resolution transmission electron [...] Read more.
Copper ferrite nano-particles (CuFe2O4) were synthesized, characterized, modified with polyaniline to form CuFe2O4/PANI nano-composite. They were used as new adsorbents for the removal of the hazardous mercuric ions from aqueous solutions. High resolution transmission electron microscope (HR-TEM), X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) and Brunauer–Emmett–Teller (BET) were used for the characterization of the synthesized CuFe2O4 nano-particles (NPs) in presence and absence of PANI nano-composite. The synthesized CuFe2O4NPs were of spherical shape with an average size of 10.8 nm. XRD analysis displayed crystal peaks for CuFe2O4NPs and amorphous peaks CuFe2O4/PANI nano-composite due to the existence of polyaniline layer. Contact time, adsorbent dose, solution pH, adsorption kinetics, adsorption isotherm and recyclability were studied. The method at the optimum conditions exhibited high performance with high mercury removal percentage of up to 99% with a maximum adsorption capacity 12.5 and 157.1 mg/g for CuFe2O4 and CuFe2O4/PANI, respectively. The adsorption processes were fitted to Langmuir isotherms. The adsorption behavior of CuFe2O4@PANI composite towards Hg2+ ions is attributed to the soft acid–soft base strong interaction between PANI and Hg(II) ions. High stability and enhanced re-usability are offered using CuFe2O4@PANI composite due to its enhanced removal efficiency. No significant removal decrease was noticed after five adsorption–desorption cycles. In addition, it possesses an easy removal from aqueous solutions by external magnetic field after adsorption experiments. These indicated the enhancement of polyaniline to the surface of CuFe2O4 toward the adsorption of mercury from aqueous solutions. Full article
Show Figures

Figure 1

Back to TopTop