Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = melamine–glutaraldehyde dendrimer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 7773 KiB  
Article
Immobilization and Characterization of a Processive Endoglucanase EG5C-1 from Bacillus subtilis on Melamine–Glutaraldehyde Dendrimer-Functionalized Magnetic Nanoparticles
by Xiaozhou Li, Jie Chen, Bin Wu, Zhen Gao and Bingfang He
Nanomaterials 2024, 14(4), 340; https://doi.org/10.3390/nano14040340 - 9 Feb 2024
Cited by 3 | Viewed by 1855
Abstract
Exploring an appropriate immobilization approach to enhance catalytic activity and reusability of cellulase is of great importance to reduce the price of enzymes and promote the industrialization of cellulose-derived biochemicals. In this study, Fe3O4 magnetic nanoparticles (MNPs) were functionalized with [...] Read more.
Exploring an appropriate immobilization approach to enhance catalytic activity and reusability of cellulase is of great importance to reduce the price of enzymes and promote the industrialization of cellulose-derived biochemicals. In this study, Fe3O4 magnetic nanoparticles (MNPs) were functionalized with meso-2,3-dimercaptosuccinic acid to introduce carboxyl groups on the surface (DMNPs). Then, melamine–glutaraldehyde dendrimer-like polymers were grafted on DMNPs to increase protein binding sites for the immobilization of processive endoglucanase EG5C-1. Moreover, this dendrimer-like structure was beneficial to protect the conformation of EG5C-1 and facilitate the interaction between substrate and active center. The loading capacity of the functionalized copolymers (MG-DMNPs) for EG5C-1 was about 195 mg/g, where more than 90% of the activity was recovered. Immobilized EG5C-1 exhibited improved thermal stability and increased tolerability over a broad pH range compared with the free one. Additionally, MG-DMNP/EG5C-1 biocomposite maintained approximately 80% of its initial hydrolysis productivity after five cycles of usage using filter paper as the substrate. Our results provided a promising approach for the functionalization of MNPs, enabling the immobilization of cellulases with a high loading capacity and excellent activity recovery. Full article
Show Figures

Figure 1

Back to TopTop