Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = megakaryocytic extracellular vesicle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3799 KiB  
Article
miR-486-5p and miR-22-3p Enable Megakaryocytic Differentiation of Hematopoietic Stem and Progenitor Cells without Thrombopoietin
by Chen-Yuan Kao, Jinlin Jiang, Will Thompson and Eleftherios T. Papoutsakis
Int. J. Mol. Sci. 2022, 23(10), 5355; https://doi.org/10.3390/ijms23105355 - 11 May 2022
Cited by 9 | Viewed by 2809
Abstract
Megakaryocytes release submicron size microparticles (MkMPs) in circulation. We have shown that MkMPs target CD34+ hematopoietic stem/progenitor cells (HSPCs) to induce megakaryocytic differentiation, and that small RNAs in MkMPs play an important role in the development of this phenotype. Here, using single-molecule real-time [...] Read more.
Megakaryocytes release submicron size microparticles (MkMPs) in circulation. We have shown that MkMPs target CD34+ hematopoietic stem/progenitor cells (HSPCs) to induce megakaryocytic differentiation, and that small RNAs in MkMPs play an important role in the development of this phenotype. Here, using single-molecule real-time (SMRT) RNA sequencing (RNAseq), we identify the synergetic effect of two microRNAs (miRs), miR-486-5p and miR-22-3p (highly enriched in MkMPs), in driving the Mk differentiation of HSPCs in the absence of thrombopoietin (TPO). Separately, our data suggest that the MkMP-induced Mk differentiation of HSPCs is enabled through JNK and PI3K/Akt/mTOR signaling. The interaction between the two signaling pathways is likely mediated by a direct target of miR-486-5p and a negative regulator of PI3K/Akt signaling, the phosphatase and tensin homologue (PTEN) protein. Our data provide a possible mechanistic explanation of the biological effect of MkMPs in inducing megakaryocytic differentiation of HSPCs, a phenotype of potential physiological significance in stress megakaryopoiesis. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

15 pages, 1592 KiB  
Article
A Specific Host/Microbial Signature of Plasma-Derived Extracellular Vesicles Is Associated to Thrombosis and Marrow Fibrosis in Polycythemia Vera
by Martina Barone, Monica Barone, Francesca Ricci, Giuseppe Auteri, Francesco Fabbri, Erika Bandini, Francesco Francia, Pier Luigi Tazzari, Nicola Vianelli, Silvia Turroni, Michele Cavo, Lucia Catani, Marco Candela and Francesca Palandri
Cancers 2021, 13(19), 4968; https://doi.org/10.3390/cancers13194968 - 2 Oct 2021
Cited by 1 | Viewed by 2693
Abstract
Polycythemia vera is a myeloproliferative neoplasm with increased risk of thrombosis and progression to myelofibrosis. However, no disease-specific risk factors have been identified so far. Circulating extracellular vesicles (EVs) are mostly of megakaryocyte (MK-EVs) and platelet (PLT-EVs) origin and, along with phosphatidylethanolamine (PE)-EVs, [...] Read more.
Polycythemia vera is a myeloproliferative neoplasm with increased risk of thrombosis and progression to myelofibrosis. However, no disease-specific risk factors have been identified so far. Circulating extracellular vesicles (EVs) are mostly of megakaryocyte (MK-EVs) and platelet (PLT-EVs) origin and, along with phosphatidylethanolamine (PE)-EVs, play a role in cancer and thrombosis. Interestingly, circulating microbial components/microbes have been recently indicated as potential modifiers of inflammation and coagulation. Here, we investigated phenotype and microbial DNA cargo of EVs after isolation from the plasma of 38 patients with polycythemia vera. Increased proportion of MK-EVs and reduced proportion of PLT-EVs identify patients with thrombosis history. Interestingly, EVs from patients with thrombosis history were depleted in Staphylococcus DNA but enriched in DNA from Actinobacteria members as well as Anaerococcus. In addition, patients with thrombosis history had also lower levels of lipopolysaccharide-associated EVs. In regard to fibrosis, along with increased proportion of PE-EVs, the EVs of patients with marrow fibrosis were enriched in DNA from Collinsella and Flavobacterium. Here, we identified a polycythemia-vera-specific host/microbial EV-based signature associated to thrombosis history and marrow fibrosis. These data may contribute to refining PV prognosis and to identifying novel druggable targets. Full article
Show Figures

Figure 1

16 pages, 1998 KiB  
Review
Zinc Homeostasis in Platelet-Related Diseases
by Elmina Mammadova-Bach and Attila Braun
Int. J. Mol. Sci. 2019, 20(21), 5258; https://doi.org/10.3390/ijms20215258 - 23 Oct 2019
Cited by 57 | Viewed by 7735
Abstract
Zn2+ deficiency in the human population is frequent in underdeveloped countries. Worldwide, approximatively 2 billion people consume Zn2+-deficient diets, accounting for 1–4% of deaths each year, mainly in infants with a compromised immune system. Depending on the severity of Zn [...] Read more.
Zn2+ deficiency in the human population is frequent in underdeveloped countries. Worldwide, approximatively 2 billion people consume Zn2+-deficient diets, accounting for 1–4% of deaths each year, mainly in infants with a compromised immune system. Depending on the severity of Zn2+ deficiency, clinical symptoms are associated with impaired wound healing, alopecia, diarrhea, poor growth, dysfunction of the immune and nervous system with congenital abnormalities and bleeding disorders. Poor nutritional Zn2+ status in patients with metastatic squamous cell carcinoma or with advanced non-Hodgkin lymphoma, was accompanied by cutaneous bleeding and platelet dysfunction. Forcing Zn2+ uptake in the gut using different nutritional supplementation of Zn2+ could ameliorate many of these pathological symptoms in humans. Feeding adult rodents with a low Zn2+ diet caused poor platelet aggregation and increased bleeding tendency, thereby attracting great scientific interest in investigating the role of Zn2+ in hemostasis. Storage protein metallothionein maintains or releases Zn2+ in the cytoplasm, and the dynamic change of this cytoplasmic Zn2+ pool is regulated by the redox status of the cell. An increase of labile Zn2+ pool can be toxic for the cells, and therefore cytoplasmic Zn2+ levels are tightly regulated by several Zn2+ transporters located on the cell surface and also on the intracellular membrane of Zn2+ storage organelles, such as secretory vesicles, endoplasmic reticulum or Golgi apparatus. Although Zn2+ is a critical cofactor for more than 2000 transcription factors and 300 enzymes, regulating cell differentiation, proliferation, and basic metabolic functions of the cells, the molecular mechanisms of Zn2+ transport and the physiological role of Zn2+ store in megakaryocyte and platelet function remain elusive. In this review, we summarize the contribution of extracellular or intracellular Zn2+ to megakaryocyte and platelet function and discuss the consequences of dysregulated Zn2+ homeostasis in platelet-related diseases by focusing on thrombosis, ischemic stroke and storage pool diseases. Full article
(This article belongs to the Special Issue Molecular and Cellular Basis of Thrombotic Diseases)
Show Figures

Figure 1

Back to TopTop