Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = mega trend diffusion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 570 KiB  
Article
An Integrated Framework Based on GAN and RBI for Learning with Insufficient Datasets
by Yao-San Lin, Liang-Sian Lin and Chih-Ching Chen
Symmetry 2022, 14(2), 339; https://doi.org/10.3390/sym14020339 - 7 Feb 2022
Cited by 3 | Viewed by 1552
Abstract
Generative adversarial networks are known as being capable of outputting data that can imitate the input well. This characteristic has led the previous research to propose the WGAN_MTD model, which joins the common version of Generative Adversarial Networks and Mega-Trend-Diffusion methods. To prevent [...] Read more.
Generative adversarial networks are known as being capable of outputting data that can imitate the input well. This characteristic has led the previous research to propose the WGAN_MTD model, which joins the common version of Generative Adversarial Networks and Mega-Trend-Diffusion methods. To prevent the data-driven model from becoming susceptible to small datasets with insufficient information, we introduced a robust Bayesian inference to the process of virtual sample generation based on the previous version and proposed its refined version, WGAN_MTD2. The new version allows users to append subjective information to the contaminated estimation of the unknown population, at a certain level. It helps Mega-Trend-Diffusion methods take into account not only the information from original small datasets but also the user’s subjective information when generating virtual samples. The flexible model will not be subject to the information from the present datasets. To verify the performance and confirm whether a robust Bayesian inference benefits the effective generation of virtual samples, we applied the proposed model to the learning task with three open data and conducted corresponding experiments for the significance tests. As the experimental study revealed, the integrated framework based on GAN and RBI, WGAN_MTD2, can perform better and lead to higher learning accuracies than the previous one. The results also confirm that a robust Bayesian inference can improve the information capturing from insufficient datasets. Full article
Show Figures

Figure 1

14 pages, 1275 KiB  
Article
A Generative Adversarial Network Structure for Learning with Small Numerical Data Sets
by Der-Chiang Li, Szu-Chou Chen, Yao-San Lin and Kuan-Cheng Huang
Appl. Sci. 2021, 11(22), 10823; https://doi.org/10.3390/app112210823 - 16 Nov 2021
Cited by 10 | Viewed by 5700
Abstract
In recent years, generative adversarial networks (GANs) have been proposed to generate simulated images, and some works of literature have applied GAN to the analysis of numerical data in many fields, such as the prediction of building energy consumption and the prediction and [...] Read more.
In recent years, generative adversarial networks (GANs) have been proposed to generate simulated images, and some works of literature have applied GAN to the analysis of numerical data in many fields, such as the prediction of building energy consumption and the prediction and identification of liver cancer stages. However, these studies are based on sufficient data volume. In the current era of globalization, the demand for rapid decision-making is increasing, but the data available in a short period of time is scarce. As a result, machine learning may not provide precise results. Obtaining more information from a small number of samples has become an important issue. Therefore, this study aimed to modify the generative adversarial network structure for learning with small numerical datasets, starting with the Wasserstein GAN (WGAN) as the GAN architecture, and using mega-trend-diffusion (MTD) to limit the bound of virtual samples that the GAN generates. The model verification of our proposed structure was conducted with two datasets in the UC Irvine Machine Learning Repository, and the performance was evaluated using three criteria: accuracy, standard deviation, and p-value. The experiment result shows that, using this improved GAN architecture (WGAN_MTD), small sample data can also be used to generate virtual samples that are similar to real samples through GAN. Full article
Show Figures

Figure 1

25 pages, 4158 KiB  
Article
A Novel Virtual Sample Generation Method to Overcome the Small Sample Size Problem in Computer Aided Medical Diagnosing
by Mohammad Wedyan, Alessandro Crippa and Adel Al-Jumaily
Algorithms 2019, 12(8), 160; https://doi.org/10.3390/a12080160 - 9 Aug 2019
Cited by 17 | Viewed by 5835
Abstract
Deep neural networks are successful learning tools for building nonlinear models. However, a robust deep learning-based classification model needs a large dataset. Indeed, these models are often unstable when they use small datasets. To solve this issue, which is particularly critical in light [...] Read more.
Deep neural networks are successful learning tools for building nonlinear models. However, a robust deep learning-based classification model needs a large dataset. Indeed, these models are often unstable when they use small datasets. To solve this issue, which is particularly critical in light of the possible clinical applications of these predictive models, researchers have developed approaches such as virtual sample generation. Virtual sample generation significantly improves learning and classification performance when working with small samples. The main objective of this study is to evaluate the ability of the proposed virtual sample generation to overcome the small sample size problem, which is a feature of the automated detection of a neurodevelopmental disorder, namely autism spectrum disorder. Results show that our method enhances diagnostic accuracy from 84%–95% using virtual samples generated on the basis of five actual clinical samples. The present findings show the feasibility of using the proposed technique to improve classification performance even in cases of clinical samples of limited size. Accounting for concerns in relation to small sample sizes, our technique represents a meaningful step forward in terms of pattern recognition methodology, particularly when it is applied to diagnostic classifications of neurodevelopmental disorders. Besides, the proposed technique has been tested with other available benchmark datasets. The experimental outcomes showed that the accuracy of the classification that used virtual samples was superior to the one that used original training data without virtual samples. Full article
(This article belongs to the Special Issue Evolutionary Algorithms in Health Technologies)
Show Figures

Figure 1

10 pages, 821 KiB  
Article
Employing a Fuzzy-Based Grey Modeling Procedure to Forecast China’s Sulfur Dioxide Emissions
by Che-Jung Chang, Guiping Li, Shao-Qing Zhang and Kun-Peng Yu
Int. J. Environ. Res. Public Health 2019, 16(14), 2504; https://doi.org/10.3390/ijerph16142504 - 13 Jul 2019
Cited by 8 | Viewed by 2538
Abstract
Effective determination of trends in sulfur dioxide emissions facilitates national efforts to draft an appropriate policy that aims to lower sulfur dioxide emissions, which is essential for reducing atmospheric pollution. However, to reflect the current situation, a favorable emission reduction policy should be [...] Read more.
Effective determination of trends in sulfur dioxide emissions facilitates national efforts to draft an appropriate policy that aims to lower sulfur dioxide emissions, which is essential for reducing atmospheric pollution. However, to reflect the current situation, a favorable emission reduction policy should be based on updated information. Various forecasting methods have been developed, but their applications are often limited by insufficient data. Grey system theory is one potential approach for analyzing small data sets. In this study, an improved modeling procedure based on the grey system theory and the mega-trend-diffusion technique is proposed to forecast sulfur dioxide emissions in China. Compared with the results obtained by the support vector regression and the radial basis function network, the experimental results indicate that the proposed procedure can effectively handle forecasting problems involving small data sets. In addition, the forecast predicts a steady decline in China’s sulfur dioxide emissions. These findings can be used by the Chinese government to determine whether its current policy to reduce sulfur dioxide emissions is appropriate. Full article
Show Figures

Figure 1

Back to TopTop