Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = marine fungal taxonomy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1125 KiB  
Review
Exploring Fungal Diversity in Seagrass Ecosystems for Pharmaceutical and Ecological Insights
by Oshadi Rajakaruna, Nalin N. Wijayawardene, Susantha Udagedara, Prabath K. Jayasinghe, Sudheera S. Gunasekara, Nattawut Boonyuen, Thushara C. Bamunuarachchige and Kahandawa G. S. U. Ariyawansa
J. Fungi 2024, 10(9), 627; https://doi.org/10.3390/jof10090627 - 2 Sep 2024
Cited by 3 | Viewed by 3787
Abstract
Marine ecosystems are important in discovering novel fungi with interesting metabolites that have shown great potential in pharmaceutical and biotechnological industries. Seagrasses, the sole submerged marine angiosperm, host diverse fungal taxa with mostly unknown metabolic capabilities. They are considered to be one of [...] Read more.
Marine ecosystems are important in discovering novel fungi with interesting metabolites that have shown great potential in pharmaceutical and biotechnological industries. Seagrasses, the sole submerged marine angiosperm, host diverse fungal taxa with mostly unknown metabolic capabilities. They are considered to be one of the least studied marine fungal habitats in the world. This review gathers and analyzes data from studies related to seagrasses-associated fungi, including taxonomy and biogeography, and highlights existing research gaps. The significance of the seagrass–fungal associations remains largely unknown, and current understanding of fungal diversity is limited to specific geographical regions such as the Tropical Atlantic, Mediterranean, and Indo-Pacific. Our survey yielded 29 culture-dependent studies on seagrass-associated endophytic and epiphytic fungi, and 13 miscellaneous studies, as well as 11 meta-studies, with no pathogenic true fungi described. There is a significant opportunity to expand existing studies and conduct multidisciplinary research into novel species and their potential applications, especially from understudied geographical locations. Future research should prioritize high-throughput sequencing and mycobiome studies, utilizing both culture-dependent and -independent approaches to effectively identify novel seagrass-associated fungal taxa. Full article
Show Figures

Figure 1

22 pages, 3736 KiB  
Review
Austin-Type Meroterpenoids from Fungi Reported in the Last Five Decades: A Review
by Jia-Li He, Chang-Jing Chen, Yong-Hong Liu, Cheng-Hai Gao, Rui-Ping Wang, Wen-Fei Zhang and Meng Bai
J. Fungi 2024, 10(2), 162; https://doi.org/10.3390/jof10020162 - 19 Feb 2024
Cited by 6 | Viewed by 2340
Abstract
Austin was first isolated as a novel polyisoprenoid mycotoxin from Aspergillus ustus in 1976. Subsequently, some new austin-type meroterpenoids (ATMTs) have been continually found. This review attempts to give a comprehensive summary of progress on the isolation, chemical structural features, biological activities, and [...] Read more.
Austin was first isolated as a novel polyisoprenoid mycotoxin from Aspergillus ustus in 1976. Subsequently, some new austin-type meroterpenoids (ATMTs) have been continually found. This review attempts to give a comprehensive summary of progress on the isolation, chemical structural features, biological activities, and fungal biodiversity of 104 novel ATMTs from 5 genera of terrestrial- and marine-derived fungi reported from October 1976 to January 2023. The genera of Penicillium and Aspergillus are the two dominant producers, producing 63.5% and 30.8% of ATMTs, respectively. Moreover, about 26.9% of ATMTs display various pronounced bioactivities, including insecticidal, anti-inflammatory, cytotoxicity, antibacterial, and PTP1B inhibitory activities. The chemical diversity and potential activities of these novel fungal ATMTs are reviewed for a better understanding, and a relevant summary focusing on the source fungi and their taxonomy is provided to shed light on the future development and research of austin-type meroterpenoids. Full article
Show Figures

Figure 1

19 pages, 4647 KiB  
Article
Metagenomes from Coastal Sediments of Kuwait: Insights into the Microbiome, Metabolic Functions and Resistome
by Nazima Habibi, Saif Uddin, Hanan Al-Sarawi, Ahmed Aldhameer, Anisha Shajan, Farhana Zakir, Nasreem Abdul Razzack and Faiz Alam
Microorganisms 2023, 11(2), 531; https://doi.org/10.3390/microorganisms11020531 - 20 Feb 2023
Cited by 20 | Viewed by 5013
Abstract
Coastal sediments in the proximity of wastewater and emergency outfalls are often sinks of pharmaceutical compounds and other organic and inorganic contaminants that are likely to affect the microbial community. The metabolites of these contaminants affect microbial diversity and their metabolic processes, resulting [...] Read more.
Coastal sediments in the proximity of wastewater and emergency outfalls are often sinks of pharmaceutical compounds and other organic and inorganic contaminants that are likely to affect the microbial community. The metabolites of these contaminants affect microbial diversity and their metabolic processes, resulting in undesirable effects on ecosystem functioning, thus necessitating the need to understand their composition and functions. In the present investigation, we studied the metagenomes of 12 coastal surface sediments through whole genome shot-gun sequencing. Taxonomic binning of the genes predicted about 86% as bacteria, 1% as archaea, >0.001% as viruses and Eukaryota, and 12% as other communities. The dominant bacterial, archaeal, and fungal genera were Woeseia, Nitrosopumilus, and Rhizophagus, respectively. The most prevalent viral families were Myoviridae and Siphoviridae, and the T4 virus was the most dominant bacteriophage. The unigenes further aligned to 26 clusters of orthologous genes (COGs) and five carbohydrate-active enzymes (CAZy) classes. Glycoside hydrolases (GH) and glycoside transferase (GT) were the highest-recorded CAzymes. The Kyoto Encyclopedia of Genes and Genomes (KEGG) level 3 functions were subjugated by purine metabolism > ABC transporters > oxidative phosphorylation > two-component system > pyrimidine metabolism > pyruvate metabolism > quorum sensing > carbon fixation pathways > ribosomes > and glyoxalate and dicarboxylate metabolism. Sequences allying with plasmids, integrons, insertion sequences and antibiotic-resistance genes were also observed. Both the taxonomies and functional abundances exhibited variation in relative abundances, with limited spatial variability (ANOVA p > 0.05; ANOSIM-0.05, p > 0.05). This study underlines the dominant microbial communities and functional genes in the marine sediments of Kuwait as a baseline for future biomonitoring programs. Full article
(This article belongs to the Collection Biodegradation and Environmental Microbiomes)
Show Figures

Figure 1

25 pages, 3913 KiB  
Review
Ecological and Oceanographic Perspectives in Future Marine Fungal Taxonomy
by Nalin N. Wijayawardene, Don-Qin Dai, Prabath K. Jayasinghe, Sudheera S. Gunasekara, Yuriko Nagano, Saowaluck Tibpromma, Nakarin Suwannarach and Nattawut Boonyuen
J. Fungi 2022, 8(11), 1141; https://doi.org/10.3390/jof8111141 - 28 Oct 2022
Cited by 12 | Viewed by 4565
Abstract
Marine fungi are an ecological rather than a taxonomic group that has been widely researched. Significant progress has been made in documenting their phylogeny, biodiversity, ultrastructure, ecology, physiology, and capacity for degradation of lignocellulosic compounds. This review (concept paper) summarizes the current knowledge [...] Read more.
Marine fungi are an ecological rather than a taxonomic group that has been widely researched. Significant progress has been made in documenting their phylogeny, biodiversity, ultrastructure, ecology, physiology, and capacity for degradation of lignocellulosic compounds. This review (concept paper) summarizes the current knowledge of marine fungal diversity and provides an integrated and comprehensive view of their ecological roles in the world’s oceans. Novel terms for ‘semi marine fungi’ and ‘marine fungi’ are proposed based on the existence of fungi in various oceanic environments. The major maritime currents and upwelling that affect species diversity are discussed. This paper also forecasts under-explored regions with a greater diversity of marine taxa based on oceanic currents. The prospects for marine and semi-marine mycology are highlighted, notably, technological developments in culture-independent sequencing approaches for strengthening our present understanding of marine fungi’s ecological roles. Full article
Show Figures

Figure 1

Back to TopTop