Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = magnitude-phase motion equation (MPME)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2883 KB  
Article
Oscillation Propagation Analysis of Grid-Connected Converter System with New eVSG Control Patterns
by Hong Zhang, Bin Xu, Jinzhong Li, Yuguang Xie and Wei Ma
Electronics 2025, 14(19), 3850; https://doi.org/10.3390/electronics14193850 - 28 Sep 2025
Viewed by 298
Abstract
The virtual synchronous generator (VSG) technique plays a crucial role in power systems with high penetration of power electronics, as it can provide virtual inertia and damping performance by emulating the swing characteristics of a synchronous generator (SG). However, the VSG faces challenges [...] Read more.
The virtual synchronous generator (VSG) technique plays a crucial role in power systems with high penetration of power electronics, as it can provide virtual inertia and damping performance by emulating the swing characteristics of a synchronous generator (SG). However, the VSG faces challenges due to its inherent limitations, such as vulnerability to disturbances and instability in strong grid conditions. To address these issues, this article proposes an exchanged VSG (eVSG) control strategy. In this approach, the phase information (θ) is derived from reactive power (Q), while the voltage information (E) is derived from active power (P). Furthermore, a Magnitude-Phase Motion Equation (MPME) is introduced to analyze the eVSG system from a physical perspective. Additionally, this article is the first to illustrate the oscillation propagation effect between P and frequency (f) in both VSG and eVSG systems. Finally, the advantages of the eVSG strategy are comprehensively demonstrated through three aspects: (1) comparing the motion trajectory of f using the MPME model, (2) evaluating the oscillation propagation effect between VSG and eVSG systems, and (3) conducting simulations and experiments. Full article
Show Figures

Figure 1

Back to TopTop