Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = magnetic levitation cart

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3783 KiB  
Article
Modeling and Estimation of the Pitch Angle for a Levitating Cart in a UAV Magnetic Catapult Under Stationary Conditions
by Edyta Ładyżyńska-Kozdraś, Bartosz Czaja, Sławomir Czubaj, Jan Tracz, Anna Sibilska-Mroziewicz and Leszek Baranowski
Electronics 2025, 14(1), 44; https://doi.org/10.3390/electronics14010044 - 26 Dec 2024
Viewed by 804
Abstract
The paper presents a method for modeling and estimating the orientation of a launch cart in the magnetic suspension system of an innovative UAV catapult. The catapult consists of stationary tracks lined with neodymium magnets, generating a trough-shaped magnetic field. The cart levitates [...] Read more.
The paper presents a method for modeling and estimating the orientation of a launch cart in the magnetic suspension system of an innovative UAV catapult. The catapult consists of stationary tracks lined with neodymium magnets, generating a trough-shaped magnetic field. The cart levitates above the tracks, supported by four containers housing high-temperature YBCO superconductors cooled with liquid nitrogen. The Meissner effect, characterized by the expulsion of magnetic fields from superconductors, ensures stable hovering of the cart. The main research challenge was to determine the cart’s orientation relative to the tracks, with a focus on the pitch angle, which is critical for collision-free operation and system efficiency. A dedicated measurement stand equipped with Hall sensors and Time-of-Flight (ToF) distance sensors was developed. Hall sensors mounted on the cart’s supports captured magnetic field data at specific points. To model the tracks, the CRISP-DM (Cross Industry Standard Process for Data Mining) methodology was employed—a structured framework consisting of six stages; from problem understanding and data preparation to model evaluation and deployment. This approach guided the analysis of data-driven models and facilitated accurate pitch angle estimation. Evaluation metrics, including mean squared error (MSE), were used to identify and select the optimal models. The final model achieved an MSE of 0.084°, demonstrating its effectiveness for precise orientation control. Full article
Show Figures

Figure 1

16 pages, 3882 KiB  
Article
Development of a Conveyor Cart with Magnetic Levitation Mechanism Based on Multi Control Strategies
by Xiaowei Tang, Seiji Hashimoto, Nobuyuki Kurita, Takahiro Kawaguchi, Eiji Ogiwara, Nobuya Hishinuma and Keisuke Egura
Appl. Sci. 2023, 13(19), 10846; https://doi.org/10.3390/app131910846 - 29 Sep 2023
Cited by 3 | Viewed by 2238
Abstract
This paper presents the experimental magnetic levitation control development of Sanki Engineering airport luggage conveyor carts which have four magnetic levitation units working synchronously. With the PID controller, the state feedback controller and the zero-power controller refined by PID controller were implemented in [...] Read more.
This paper presents the experimental magnetic levitation control development of Sanki Engineering airport luggage conveyor carts which have four magnetic levitation units working synchronously. With the PID controller, the state feedback controller and the zero-power controller refined by PID controller were implemented in the one magnetic levitation unit system and four-unit magnetic levitation system, and the displacement and the current were verified in a real-time system. The magnetic levitation unit had a fast response, and the control algorithms were easily implemented. The change of current and displacement were compared. In the one-unit system, the PID and state feedback controller react to the disturbance at the same speed and have similar power consumptions. For a disturbance on the zero-power controller, the system generates a transient current to deal with the load disturbance and finally settles to 0 A. The PID control for four magnetic levitation units of the conveyor cart has a better stable performance during synchronous operation. Under the control of state feedback controller, they can keep the cart statically stable with some oscillation. These characteristics are experimentally confirmed. Full article
(This article belongs to the Special Issue Electric Power Applications II)
Show Figures

Figure 1

16 pages, 6623 KiB  
Article
Dynamics of Separation of Unmanned Aerial Vehicles from the Magnetic Launcher Cart during Takeoff
by Edyta Ładyżyńska-Kozdraś, Anna Sibilska-Mroziewicz, Krzysztof Sibilski, Danyil Potoka and Andrzej Żyluk
Electronics 2023, 12(13), 2883; https://doi.org/10.3390/electronics12132883 - 29 Jun 2023
Cited by 4 | Viewed by 1837
Abstract
Most aircraft launchers exhibit a rapid acceleration of the launching aircraft, often exceeding ten times the acceleration due to gravity. However, only magnetic launchers offer flexible control over the propulsion force of the launcher cart, enabling precise control over the aircraft’s acceleration and [...] Read more.
Most aircraft launchers exhibit a rapid acceleration of the launching aircraft, often exceeding ten times the acceleration due to gravity. However, only magnetic launchers offer flexible control over the propulsion force of the launcher cart, enabling precise control over the aircraft’s acceleration and speed during its movement on the launcher. Consequently, extensive research is being conducted on magnetic launchers to ensure the repeatability of launch parameters, protect against aircraft overloads, and ensure operator safety. This article describes the process of modeling and analyzing the dynamical properties of a launch cart of an innovative prototype launcher, which employs a passive magnetic suspension with high-temperature superconductors, developed under the GABRIEL project. The developed mathematical model of the magnetic catapult cart was employed to conduct numerical studies of the longitudinal and lateral movement of the cart, as well as the configuration of the UAV–cart system during UAV takeoff under variable atmospheric conditions. An essential aspect of the research involved experimentally determining the magnetic levitation force generated by the superconductors as a function of the gap. The results obtained demonstrate that the analyzed catapult design enables safe UAV takeoff. External factors and potential vibrations resulting from uneven mass distribution in the UAV–cart system are effectively balanced by the magnetic forces arising from the Meissner effect and the flux pinning phenomenon. The primary advantage of the magnetic levitation catapult, in comparison to commercial catapults, lies in its ability to provide a reduced and consistent acceleration throughout the entire takeoff process. Full article
Show Figures

Figure 1

Back to TopTop