Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = magnanelliite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 13246 KB  
Review
Sulfates from the Pyrite Ore Deposits of the Apuan Alps (Tuscany, Italy): A Review
by Cristian Biagioni, Daniela Mauro and Marco Pasero
Minerals 2020, 10(12), 1092; https://doi.org/10.3390/min10121092 - 5 Dec 2020
Cited by 14 | Viewed by 5715
Abstract
The occurrence of sulfate minerals associated with the pyrite ores of the southern Apuan Alps has been known since the 19th century but modern mineralogical studies started only in the last decade. Sulfate assemblages were identified in all the pyrite ore deposits from [...] Read more.
The occurrence of sulfate minerals associated with the pyrite ores of the southern Apuan Alps has been known since the 19th century but modern mineralogical studies started only in the last decade. Sulfate assemblages were identified in all the pyrite ore deposits from the studied area but the more impressive associations were discovered in the Fornovolasco and Monte Arsiccio mines. Their study allowed to improve the knowledge of the sulfate crystal-chemistry and to achieve a better understanding of the acid mine drainage (AMD) systems associated with pyrite oxidation. More than 20 different mineral species were identified and, among them, four sulfates (volaschioite, giacovazzoite, magnanelliite, and scordariite) have their type localities in the pyrite ore deposits of the Apuan Alps. A review of the mineralogical results of a ten-year-long study is given here. Full article
(This article belongs to the Special Issue Sulfates: Crystal-Chemistry and Their Geological Significance)
Show Figures

Figure 1

11 pages, 5242 KB  
Article
Crystal-Chemistry of Sulfates from the Apuan Alps (Tuscany, Italy). VII. Magnanelliite, K3Fe3+2(SO4)4 (OH)(H2O)2, a New Sulfate from the Monte Arsiccio Mine
by Cristian Biagioni, Luca Bindi and Anthony R. Kampf
Minerals 2019, 9(12), 779; https://doi.org/10.3390/min9120779 - 12 Dec 2019
Cited by 9 | Viewed by 4853
Abstract
The new mineral species magnanelliite, K3Fe3+2(SO4)4(OH)(H2O)2, was discovered in the Monte Arsiccio mine, Apuan Alps, Tuscany, Italy. It occurs as steeply terminated prisms, up to 0.5 mm in length, yellow [...] Read more.
The new mineral species magnanelliite, K3Fe3+2(SO4)4(OH)(H2O)2, was discovered in the Monte Arsiccio mine, Apuan Alps, Tuscany, Italy. It occurs as steeply terminated prisms, up to 0.5 mm in length, yellow to orange-yellow in color, with a vitreous luster. Streak is pale yellow, Mohs hardness is ca. 3, and cleavage is good on {010}, fair on {100}. The measured density is 2.82(3) g/cm3. Magnanelliite is optically biaxial (+), with α = 1.628(2), β = 1.637(2), γ = 1.665(2) (white light), 2Vmeas = 60(2)°, and 2Vcalc = 59.9°. It exhibits a strong dispersion, r > v. The optical orientation is Y = b, X ^ c ~ 25° in the obtuse angle β. It is pleochroic, with X = orange yellow, Y and Z = yellow. Magnanelliite is associated with alum-(K), giacovazzoite, gypsum, jarosite, krausite, melanterite, and scordariite. Electron microprobe analyses give (wt.%): SO3 47.82, TiO2 0.05, Al2O3 0.40, Fe2O3 25.21, MgO 0.07, Na2O 0.20, K2O 21.35, H2Ocalc 6.85, total 101.95. On the basis of 19 anions per formula unit, assuming the occurrence of one (OH) and two H2O groups, the empirical chemical formula of magnanelliite is (K2.98Na0.04)Σ3.02(Fe3+2.08Al0.05Mg0.01)Σ2.14S3.93O16(OH)(H2O)2. The ideal end-member formula can be written as K3Fe3+2(SO4)4(OH)(H2O)2. Magnanelliite is monoclinic, space group C2/c, with a = 7.5491(3), b = 16.8652(6), c = 12.1574(4) Å, β = 94.064(1)°, V = 1543.95(10) Å3, Z = 4. Strongest diffraction lines of the observed X-ray powder pattern are [d(in Å), estimated visual intensity, hkl]: 6.9, medium, 021 and 110; 4.91, medium-weak, 022; 3.612, medium-weak, 1 ¯ 32, 023, and 1 ¯ 13; 3.085, strong, 202, 150, and 1 ¯ 33; 3.006, medium, 004, 1 ¯ 51, and 151; 2.704, medium, 152 and 2 ¯ 23; 2.597, medium-weak, 2 ¯ 42; 2.410, medium-weak, 153. The crystal structure of magnanelliite has been refined using X-ray single-crystal data to a final R1 = 0.025, on the basis of 2411 reflections with Fo > 4σ(Fo) and 144 refined parameters. The crystal structure is isotypic with that of alcaparrosaite, K3Ti4+Fe3+(SO)4O(H2O)2. Full article
(This article belongs to the Collection New Minerals)
Show Figures

Figure 1

13 pages, 2383 KB  
Article
Crystal Chemistry of Sulfates from the Apuan Alps (Tuscany, Italy). V. Scordariite, K8(Fe3+0.670.33)[Fe3+3O(SO4)6(H2O)3]2(H2O)11: A New Metavoltine-Related Mineral
by Cristian Biagioni, Luca Bindi, Daniela Mauro and Ulf Hålenius
Minerals 2019, 9(11), 702; https://doi.org/10.3390/min9110702 - 13 Nov 2019
Cited by 11 | Viewed by 5553
Abstract
The new mineral species scordariite, K8(Fe3+0.670.33)[Fe3+3O(SO4)6(H2O)3]2(H2O)11, was discovered in the Monte Arsiccio mine, Apuan Alps, Tuscany, Italy. It occurs [...] Read more.
The new mineral species scordariite, K8(Fe3+0.670.33)[Fe3+3O(SO4)6(H2O)3]2(H2O)11, was discovered in the Monte Arsiccio mine, Apuan Alps, Tuscany, Italy. It occurs as pseudo-hexagonal tabular crystals, yellowish to brownish in color, up to 0.5 mm in size. Cleavage is perfect on {0001}. It is associated with giacovazzoite, krausite, gypsum, jarosite, alum-(K), and magnanelliite. Electron microprobe analyses give (wt %): SO3 47.31, Al2O3 0.66, Fe2O3 24.68, FeO 0.69, Na2O 0.52, K2O 17.36, H2Ocalc 15.06, total 106.28. The partitioning of Fe between Fe2+ and Fe3+ was based on Mössbauer spectroscopy. On the basis of 67 O atoms per formula unit, the empirical chemical formula is (K7.50Na0.34)Σ7.84(Fe3+6.29Al0.26Fe2+0.20)Σ6.75S12.02O50·17H2O. The ideal end-member formula can be written as K8(Fe3+0.670.33)[Fe3+3O(SO4)6(H2O)3]2(H2O)11. Scordariite is trigonal, space group R-3, with (hexagonal setting) a = 9.7583(12), c = 53.687(7) Å, V = 4427.4(12) Å3, Z = 3. The main diffraction lines of the observed X-ray powder pattern are [d(in Å), estimated visual intensity]: 8.3, strong; 6.6, medium; 3.777, medium; 3.299, medium; 3.189, medium; 2.884, strong. The crystal structure of scordariite has been refined using X-ray single-crystal data to a final R1 = 0.057 on the basis of 1980 reflections with Fo > 4σ(Fo) and 165 refined parameters. It can be described as a layered structure formed by three kinds of layers. As with other metavoltine-related minerals, scordariite is characterized by the occurrence of the [Fe3+3O(SO4)6(H2O)3]5− heteropolyhedral cluster. Full article
(This article belongs to the Collection New Minerals)
Show Figures

Figure 1

Back to TopTop