Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = mPRα

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2913 KiB  
Article
Functional Implications of Estrogen and Progesterone Receptors Expression in Adenomyosis, Potential Targets for Endocrinological Therapy
by Maria Sztachelska, Donata Ponikwicka-Tyszko, Lydia Martínez-Rodrigo, Piotr Bernaczyk, Ewelina Palak, Weronika Półchłopek, Tomasz Bielawski and Sławomir Wołczyński
J. Clin. Med. 2022, 11(15), 4407; https://doi.org/10.3390/jcm11154407 - 28 Jul 2022
Cited by 12 | Viewed by 3448
Abstract
Adenomyosis is a common gynaecological disease associated with the presence of endometrial lesions in the uterine myometrium. Estrogens have been proven to be the crucial hormones driving the growth of adenomyosis. Little is known about the distinct mechanisms of progesterone action in adenomyosis. [...] Read more.
Adenomyosis is a common gynaecological disease associated with the presence of endometrial lesions in the uterine myometrium. Estrogens have been proven to be the crucial hormones driving the growth of adenomyosis. Little is known about the distinct mechanisms of progesterone action in adenomyosis. Hence, in this study, we decided to characterize the expression of all nuclear and membrane estrogen and progesterone receptors. Additionally, as a functional investigation, we monitored prolactin production and cell proliferation after estradiol and progesterone treatments. We confirmed the presence of all nuclear and membrane estrogen and progesterone receptors in adenomyotic lesions at gene and protein levels. The expression of membrane progesterone receptors α and β (mPRα, mPRβ) as well as estrogen receptor β (ERβ) was upregulated in adenomyosis compared to normal myometrium. Estradiol significantly increased adenomyotic cell proliferation. Progesterone and cAMP upregulated prolactin secretion in adenomyosis in the same pattern as in the normal endometrium. In the present study, we showed the functional link between estradiol action and adenomyotic cell proliferation, as well as progesterone and prolactin production. Our findings provide novel insights into the sex steroid receptor expression pattern and potential regulated pathways in adenomyosis, suggesting that all receptors play an important role in adenomyosis pathophysiology. Full article
(This article belongs to the Special Issue Updates in Diagnosis and Treatment of Infertility)
Show Figures

Figure 1

15 pages, 1126 KiB  
Review
Membrane Progesterone Receptors (mPRs, PAQRs): Review of Structural and Signaling Characteristics
by Peter Thomas
Cells 2022, 11(11), 1785; https://doi.org/10.3390/cells11111785 - 30 May 2022
Cited by 56 | Viewed by 5559
Abstract
The role of membrane progesterone receptors (mPRs), which belong to the progestin and adipoQ receptor (PAQR) family, in mediating rapid, nongenomic (non-classical) progestogen actions has been extensively studied since their identification 20 years ago. Although the mPRs have been implicated in progestogen regulation [...] Read more.
The role of membrane progesterone receptors (mPRs), which belong to the progestin and adipoQ receptor (PAQR) family, in mediating rapid, nongenomic (non-classical) progestogen actions has been extensively studied since their identification 20 years ago. Although the mPRs have been implicated in progestogen regulation of numerous reproductive and non-reproductive functions in vertebrates, several critical aspects of their structure and signaling functions have been unresolved until recently and remain the subject of considerable debate. This paper briefly reviews recent developments in our understanding of the structure and functional characteristics of mPRs. The proposed membrane topology of mPRα, the structure of its ligand-binding site, and the binding affinities of steroids were predicted from homology modeling based on the structures of other PAQRs, adiponectin receptors, and confirmed by mutational analysis and ligand-binding assays. Extensive data demonstrating that mPR-dependent progestogen regulation of intracellular signaling through mPRs is mediated by activation of G proteins are reviewed. Close association of mPRα with progesterone membrane receptor component 1 (PGRMC1), its role as an adaptor protein to mediate cell-surface expression of mPRα and mPRα-dependent progestogen signaling has been demonstrated in several vertebrate models. In addition, evidence is presented that mPRs can regulate the activity of other hormone receptors. Full article
(This article belongs to the Special Issue Progesterone Receptor Signaling)
Show Figures

Figure 1

13 pages, 1245 KiB  
Article
Effect of Steroid Hormones, Prostaglandins (E2 and F2α), Oxytocin, and Tumor Necrosis Factor Alpha on Membrane Progesterone (P4) Receptors Gene Expression in Bovine Myometrial Cells
by Magdalena K. Kowalik, Karolina Dobrzyn, Jaroslaw Mlynarczuk and Robert Rekawiecki
Animals 2022, 12(4), 519; https://doi.org/10.3390/ani12040519 - 19 Feb 2022
Cited by 6 | Viewed by 3176
Abstract
Myometrium tissue shows the expression of non-genomic membrane progesterone (P4) receptors, such as progesterone receptor membrane components (PGRMC) 1 and 2 and membrane progestin receptors (mPR) alpha (mPRα), beta (mPRβ), and gamma (mPRγ). Their variable expression in the bovine uterus during the estrous [...] Read more.
Myometrium tissue shows the expression of non-genomic membrane progesterone (P4) receptors, such as progesterone receptor membrane components (PGRMC) 1 and 2 and membrane progestin receptors (mPR) alpha (mPRα), beta (mPRβ), and gamma (mPRγ). Their variable expression in the bovine uterus during the estrous cycle and early pregnancy suggests that ovarian steroids and luteotropic and/or luteolytic factors may regulate the expression of these receptors in the myometrium. Therefore, this study aimed to examine the effect of P4, estradiol (E2), P4 with E2, prostaglandins (PG) E2 and F2α, oxytocin (OT), and tumor necrosis factor α (TNFα) on the gene expression of PGRMC1, PGRMC2, serpine-1 mRNA-binding protein (SERBP1), and mPRα, mPRβ, and mPRγ in bovine myometrial cells from days 6 to 10 and 11 to 16 of the estrous cycle. The PGE2 concentration and mRNA expression were determined by EIA and real-time PCR, respectively. The data indicated that P4 and E2 can affect the mRNA expression of all studied receptors and SERPB1. However, PGE2, OT, and TNFα could only modulate the expression of PGRMC1, PGRMC2, and SERPB1, respectively. Steroids/factors changed the expression of PGRMC and mPR genes depending on the dose, the stage of the estrous cycle, and the types of receptors. This suggests that the local hormonal milieu may influence the activity of these receptors and P4 action in myometrial cells during the estrous cycle. Full article
(This article belongs to the Section Animal Reproduction)
Show Figures

Figure 1

Back to TopTop