Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = lymphocytic-variant hypereosinophilic syndrome

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 5476 KiB  
Review
Hematological Neoplasms with Eosinophilia
by Rosario M. Morales-Camacho, Teresa Caballero-Velázquez, Juan José Borrero, Ricardo Bernal and Concepción Prats-Martín
Cancers 2024, 16(2), 337; https://doi.org/10.3390/cancers16020337 - 12 Jan 2024
Cited by 3 | Viewed by 6075
Abstract
Eosinophils in peripheral blood account for 0.3–5% of leukocytes, which is equivalent to 0.05–0.5 × 109/L. A count above 0.5 × 109/L is considered to indicate eosinophilia, while a count equal to or above 1.5 × 109/L [...] Read more.
Eosinophils in peripheral blood account for 0.3–5% of leukocytes, which is equivalent to 0.05–0.5 × 109/L. A count above 0.5 × 109/L is considered to indicate eosinophilia, while a count equal to or above 1.5 × 109/L is defined as hypereosinophilia. In bone marrow aspirate, eosinophilia is considered when eosinophils make up more than 6% of the total nuclear cells. In daily clinical practice, the most common causes of reactive eosinophilia are non-hematologic, whether they are non-neoplastic (allergic diseases, drugs, infections, or immunological diseases) or neoplastic (solid tumors). Eosinophilia that is associated with a hematological malignancy may be reactive or secondary to the production of eosinophilopoietic cytokines, and this is mainly seen in lymphoid neoplasms (Hodgkin lymphoma, mature T-cell neoplasms, lymphocytic variant of hypereosinophilic syndrome, and B-acute lymphoblastic leukemia/lymphoma). Eosinophilia that is associated with a hematological malignancy may also be neoplastic or primary, derived from the malignant clone, usually in myeloid neoplasms or with its origin in stem cells (myeloid/lymphoid neoplasms with eosinophilia and tyrosine kinase gene fusions, acute myeloid leukemia with core binding factor translocations, mastocytosis, myeloproliferative neoplasms, myelodysplastic/myeloproliferative neoplasms, and myelodysplastic neoplasms). There are no concrete data in standardized cytological and cytometric procedures that could predict whether eosinophilia is reactive or clonal. The verification is usually indirect, based on the categorization of the accompanying hematologic malignancy. This review focuses on the broad differential diagnosis of hematological malignancies with eosinophilia. Full article
(This article belongs to the Special Issue Diagnosis of Hematologic Malignancies)
Show Figures

Figure 1

22 pages, 2431 KiB  
Review
Molecular Pathogenesis and Treatment Perspectives for Hypereosinophilia and Hypereosinophilic Syndromes
by Stefania Stella, Michele Massimino, Livia Manzella, Maria Stella Pennisi, Elena Tirrò, Chiara Romano, Silvia Rita Vitale, Adriana Puma, Cristina Tomarchio, Sandra Di Gregorio, Giuseppe Alberto Palumbo and Paolo Vigneri
Int. J. Mol. Sci. 2021, 22(2), 486; https://doi.org/10.3390/ijms22020486 - 6 Jan 2021
Cited by 15 | Viewed by 7794
Abstract
Hypereosinophilia (HE) is a heterogeneous condition with a persistent elevated eosinophil count of >350/mm3, which is reported in various (inflammatory, allergic, infectious, or neoplastic) diseases with distinct pathophysiological pathways. HE may be associated with tissue or organ damage and, in this [...] Read more.
Hypereosinophilia (HE) is a heterogeneous condition with a persistent elevated eosinophil count of >350/mm3, which is reported in various (inflammatory, allergic, infectious, or neoplastic) diseases with distinct pathophysiological pathways. HE may be associated with tissue or organ damage and, in this case, the disorder is classified as hypereosinophilic syndrome (HES). Different studies have allowed for the discovery of two major pathogenetic variants known as myeloid or lymphocytic HES. With the advent of molecular genetic analyses, such as T-cell receptor gene rearrangement assays and Next Generation Sequencing, it is possible to better characterize these syndromes and establish which patients will benefit from pharmacological targeted therapy. In this review, we highlight the molecular alterations that are involved in the pathogenesis of eosinophil disorders and revise possible therapeutic approaches, either implemented in clinical practice or currently under investigation in clinical trials. Full article
(This article belongs to the Special Issue BCR-ABL1 Negative Myeloproliferative Neoplasms)
Show Figures

Figure 1

20 pages, 1576 KiB  
Review
Gene Expression Comparison between Sézary Syndrome and Lymphocytic-Variant Hypereosinophilic Syndrome Refines Biomarkers for Sézary Syndrome
by Andrea Moerman-Herzog, Syed J. Mehdi and Henry K. Wong
Cells 2020, 9(9), 1992; https://doi.org/10.3390/cells9091992 - 29 Aug 2020
Cited by 8 | Viewed by 4107
Abstract
Sézary syndrome (SS), an aggressive cutaneous T-cell lymphoma (CTCL) with poor prognosis, is characterized by the clinical hallmarks of circulating malignant T cells, erythroderma and lymphadenopathy. However, highly variable clinical skin manifestations and similarities with benign mimickers can lead to significant diagnostic delay [...] Read more.
Sézary syndrome (SS), an aggressive cutaneous T-cell lymphoma (CTCL) with poor prognosis, is characterized by the clinical hallmarks of circulating malignant T cells, erythroderma and lymphadenopathy. However, highly variable clinical skin manifestations and similarities with benign mimickers can lead to significant diagnostic delay and inappropriate therapy that can lead to disease progression and mortality. SS has been the focus of numerous transcriptomic-profiling studies to identify sensitive and specific diagnostic and prognostic biomarkers. Benign inflammatory disease controls (e.g., psoriasis, atopic dermatitis) have served to identify chronic inflammatory phenotypes in gene expression profiles, but provide limited insight into the lymphoproliferative and oncogenic roles of abnormal gene expression in SS. This perspective was recently clarified by a transcriptome meta-analysis comparing SS and lymphocytic-variant hypereosinophilic syndrome, a benign yet often clonal T-cell lymphoproliferation, with clinical features similar to SS. Here we review the rationale for selecting lymphocytic-variant hypereosinophilic syndrome (L-HES) as a disease control for SS, and discuss differentially expressed genes that may distinguish benign from malignant lymphoproliferative phenotypes, including additional context from prior gene expression studies to improve understanding of genes important in SS. Full article
Show Figures

Figure 1

Back to TopTop