Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = lomaiviticin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1158 KiB  
Article
Isolation, Structure Elucidation and Biological Evaluation of Lomaiviticins F–H, Dimeric Benzofluorene Glycosides from Marine-Derived Micromonospora sp. Bacterium
by Fan Zhang, Wenhui Wang, Doug R. Braun, Gene E. Ananiev, Weiting Liao, Mary Kay Harper, Scott R. Rajski and Tim S. Bugni
Mar. Drugs 2025, 23(2), 65; https://doi.org/10.3390/md23020065 - 3 Feb 2025
Cited by 1 | Viewed by 1260
Abstract
The discovery of new natural products remains a cornerstone of therapeutic innovation, and effective analytical tools for rapid dereplication can significantly accelerate this process. Using Isotopic Fine Structure (IFS) mass spectrometry, we rapidly identified three new dimeric benzofluorene glycosides, lomaiviticins F–H (1 [...] Read more.
The discovery of new natural products remains a cornerstone of therapeutic innovation, and effective analytical tools for rapid dereplication can significantly accelerate this process. Using Isotopic Fine Structure (IFS) mass spectrometry, we rapidly identified three new dimeric benzofluorene glycosides, lomaiviticins F–H (13), from a marine-derived Micromonospora sp. bacterium. These compounds were isolated and structurally elucidated through advanced spectroscopic techniques, including FT-ICR-MS and NMR. Lomaiviticins F–H exhibit unique structural features, notably the 4-O-methyl-l-angolosamine moieties, which differentiate them from previously known lomaiviticins A–E. The discovery of these compounds highlights distinct biosynthetic linkages within the lomaiviticin family, particularly the C2–C2′ conjoining bonds characteristic of the dimers. Compounds 13 were evaluated for in vitro cytotoxicity against a panel of human cancer cell lines; the resulting IC50 values confirmed that the dimeric diazofluorenes of lomaiviticins A and B are critical for anticancer activity. These findings emphasize the utility of IFS in expediting natural product discovery while providing valuable insights into structural and functional characterizations of bioactive compounds. Full article
(This article belongs to the Section Structural Studies on Marine Natural Products)
Show Figures

Graphical abstract

Back to TopTop