Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = lodging percentage and severity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5781 KB  
Article
UAV-Multispectral Based Maize Lodging Stress Assessment with Machine and Deep Learning Methods
by Minghu Zhao, Dashuai Wang, Qing Yan, Zhuolin Li and Xiaoguang Liu
Agriculture 2025, 15(1), 36; https://doi.org/10.3390/agriculture15010036 - 26 Dec 2024
Cited by 1 | Viewed by 2701
Abstract
Maize lodging is a prevalent stress that can significantly diminish corn yield and quality. Unmanned aerial vehicles (UAVs) remote sensing is a practical means to quickly obtain lodging information at field scale, such as area, severity, and distribution. However, existing studies primarily use [...] Read more.
Maize lodging is a prevalent stress that can significantly diminish corn yield and quality. Unmanned aerial vehicles (UAVs) remote sensing is a practical means to quickly obtain lodging information at field scale, such as area, severity, and distribution. However, existing studies primarily use machine learning (ML) methods to qualitatively analyze maize lodging (lodging and non-lodging) or estimate the maize lodging percentage, while there is less research using deep learning (DL) to quantitatively estimate maize lodging parameters (type, severity, and direction). This study aims to introduce advanced DL algorithms into the maize lodging classification task using UAV-multispectral images and investigate the advantages of DL compared with traditional ML methods. This study collected a UAV-multispectral dataset containing non-lodging maize and lodging maize with different lodging types, severities, and directions. Additionally, 22 vegetation indices (VIs) were extracted from multispectral data, followed by spatial aggregation and image cropping. Five ML classifiers and three DL models were trained to classify the maize lodging parameters. Finally, we compared the performance of ML and DL models in evaluating maize lodging parameters. The results indicate that the Random Forest (RF) model outperforms the other four ML algorithms, achieving an overall accuracy (OA) of 89.29% and a Kappa coefficient of 0.8852. However, the maize lodging classification performance of DL models is significantly better than that of ML methods. Specifically, Swin-T performs better than ResNet-50 and ConvNeXt-T, with an OA reaching 96.02% and a Kappa coefficient of 0.9574. This can be attributed to the fact that Swin-T can more effectively extract detailed information that accurately characterizes maize lodging traits from UAV-multispectral data. This study demonstrates that combining DL with UAV-multispectral data enables a more comprehensive understanding of maize lodging type, severity, and direction, which is essential for post-disaster rescue operations and agricultural insurance claims. Full article
Show Figures

Figure 1

18 pages, 6402 KB  
Article
Quantifying Lodging Percentage and Lodging Severity Using a UAV-Based Canopy Height Model Combined with an Objective Threshold Approach
by Norman Wilke, Bastian Siegmann, Lasse Klingbeil, Andreas Burkart, Thorsten Kraska, Onno Muller, Anna van Doorn, Sascha Heinemann and Uwe Rascher
Remote Sens. 2019, 11(5), 515; https://doi.org/10.3390/rs11050515 - 3 Mar 2019
Cited by 75 | Viewed by 8390
Abstract
Unmanned aerial vehicles (UAVs) open new opportunities in precision agriculture and phenotyping because of their flexibility and low cost. In this study, the potential of UAV imagery was evaluated to quantify lodging percentage and lodging severity of barley using structure from motion (SfM) [...] Read more.
Unmanned aerial vehicles (UAVs) open new opportunities in precision agriculture and phenotyping because of their flexibility and low cost. In this study, the potential of UAV imagery was evaluated to quantify lodging percentage and lodging severity of barley using structure from motion (SfM) techniques. Traditionally, lodging quantification is based on time-consuming manual field observations. Our UAV-based approach makes use of a quantitative threshold to determine lodging percentage in a first step. The derived lodging estimates showed a very high correlation to reference data (R2 = 0.96, root mean square error (RMSE) = 7.66%) when applied to breeding trials, which could also be confirmed under realistic farming conditions. As a second step, an approach was developed that allows the assessment of lodging severity, information that is important to estimate yield impairment, which also takes the intensity of lodging events into account. Both parameters were tested on three ground sample distances. The lowest spatial resolution acquired from the highest flight altitude (100 m) still led to high accuracy, which increases the practicability of the method for large areas. Our new lodging assessment procedure can be used for insurance applications, precision farming, and selecting for genetic lines with greater lodging resistance in breeding research. Full article
Show Figures

Graphical abstract

Back to TopTop