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Abstract: Unmanned aerial vehicles (UAVs) open new opportunities in precision agriculture and
phenotyping because of their flexibility and low cost. In this study, the potential of UAV imagery
was evaluated to quantify lodging percentage and lodging severity of barley using structure from
motion (SfM) techniques. Traditionally, lodging quantification is based on time-consuming manual
field observations. Our UAV-based approach makes use of a quantitative threshold to determine
lodging percentage in a first step. The derived lodging estimates showed a very high correlation to
reference data (R2 = 0.96, root mean square error (RMSE) = 7.66%) when applied to breeding trials,
which could also be confirmed under realistic farming conditions. As a second step, an approach was
developed that allows the assessment of lodging severity, information that is important to estimate
yield impairment, which also takes the intensity of lodging events into account. Both parameters
were tested on three ground sample distances. The lowest spatial resolution acquired from the highest
flight altitude (100 m) still led to high accuracy, which increases the practicability of the method for
large areas. Our new lodging assessment procedure can be used for insurance applications, precision
farming, and selecting for genetic lines with greater lodging resistance in breeding research.

Keywords: precision agriculture; remote sensing; unmanned aerial vehicles (UAVs); structure from
motion; ground model; digital terrain model; plant height; canopy height model; lodging percentage
and severity; ground sample distance influence

1. Introduction

The rapid development of sensor technology and data processing contributes to increasing
digitalization in agriculture [1,2]. The use of unmanned aerial vehicles (UAVs) can help to advance
and accelerate this process, particularly for field phenotyping and precision agriculture [3–5]. Due to
the low cost, simple handling, and high flexibility of UAVs [6], UAV technology has been increasingly
applied in different areas in recent years [7–10]. In comparison to satellite and airborne systems,
UAVs allow acquisition of image data with high spatial resolution, which is a basic requirement for
deriving the three-dimensional (3D) canopy structure of crops using feature matching and structure
from motion (SfM) techniques [11–13].

To derive the canopy height (CH) from the canopy structure, a nonvegetated ground model
is needed. This ground model represents the topsoil surface, which is usually acquired by a UAV
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overflight shortly after sowing or harvest, when agricultural fields are free of vegetation [14,15]. This
kind of information can also be provided by digital terrain models (DTMs) derived from airborne
light detection and ranging (LIDAR) data. Different studies have already examined the quality and
accuracy of LIDAR DTMs [16–19]. The potential of this data source as an alternative ground model for
CH retrieval, however, has not yet been evaluated.

The UAV CH has been investigated in several studies in recent years [20–22]. Noninvasive
measurement of CH, multitemporal growth curves [23,24], and biomass development [25,26] at
different phenological stages is a major requirement for precision agriculture. Crop vitality, fertilizer
status, soil quality, and water availability influence the aforementioned plant traits and are used to
optimize agricultural management practices or yield predictions [27–31]. Compared to plant height
measured with a ruler in the field at a specific location, the UAV-based approach provides information
on the spatial height distribution of a continuous canopy [32,33]. Thus, it contains height information
of numerous single plants, while reference measurements in the field only represent height information
of single plants covering a very limited area.

Furthermore, CH is very well suited to quantify lodged areas. The term “lodging” is defined as
permanent displacement of a plant from the upright position [34,35]. It is a major problem in cereal
crops, because it leads to qualitative and quantitative yield losses up to 45% [34,36–38]. Yield loss is
strongly affected by the lodging severity and the development stage at which it occurs [39–41]. Extreme
weather conditions (wind, hail, heavy rain) and other environmental factors, such as excessive nitrogen
supply, pests, diseases, and high plant density, can cause lodging before harvesting [42]. Thus, breeding
programs aim to select for genetic lines of cereal crops with greater lodging resistance [37]. Due to
the impacts of climate change, with an increasing number of extreme weather conditions, lodging is
still a major limiting factor in yield impairment, resulting in an increasing need for a cost-efficient and
accurate approach to quantify lodging. The use of UAVs can replace laborious and subjective ground
data collection and enable spatial assessment of lodging by an automated system. Susko et al. [43] tried
to assess crop lodging with a field camera track system. Liu et al. [44] used visible and thermal infrared
images derived from UAV for rice lodging estimation. Texture information and canopy structure have
also been used to assess lodging in rice [45]. Murakami et al. [46] quantified lodging in buckwheat
using the 3D canopy structure. In general, the area of lodging can be determined by using a predefined
threshold at which CH lodging occurs. However, the thresholds applied in different studies [32,45,47]
were defined by subjective inspections rather than by mathematical approaches.

The lodging percentage parameter identified with the single threshold approach only enables
to determine the presence or absence of lodging. In recent years, several studies showed that yield
impairment is additionally affected by lodging severity [34,39,46,48]. The term “lodging severity”
is defined as the angle of the permanent displacement of plants from their upright position [34,48].
Ground data based on visual lodging scores are generally insufficient in accuracy, efficiency, and
objectivity [46,49]. So far, only Chu et al. [14] have assessed the lodging severity of corn by quantifying
the number of lodge plants. Due to the typical plant structure and plant density of corn, this approach
cannot be applied to cereal crops.

The major aims of this study are to use canopy structure derived from red/green/blue (RGB)
image data to determine the factors that affect canopy height and to develop new methodologies for
the assessment of lodging percentage and severity. The primary objectives are: (i) to compare plant
traits derived from UAV- and DTM-based ground models to evaluate whether the DTM can serve
as an alternative data source; (ii) to investigate the comparability between ground-measured plant
heights in the field with UAV-derived CHs, taking factors like canopy structure and plant density into
account; (iii) to develop a mathematical approach for the assessment of lodging percentage, avoiding
adjusted thresholds and subjective decisions; and (iv) to assess lodging severity with a novel approach
based on canopy height variations.
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2. Materials and Methods

2.1. Study Area

The study area is located at the field lab on the Campus Klein-Altendorf of the University of Bonn
(50◦37′N, 6◦59′E), 40 km south of Cologne, Germany. Within the research campus, 2 experimental sites
were investigated. The first experimental site was sown on 09 April 2016 and consisted of several small
breeder plots, each 2.62 × 3 m in size. This experiment was the test bed for developing a method that
allows canopy height and lodging assessment. The layout included three summer barley (Hordeum
vulgare) cultivars (HOR 21770, HOR 9707, HOR 3939) and two different sowing densities with six
repetitions (Figure 1a). The high density (300 seeds m−2) reflected the common sowing density in
Germany. The lower density consisted of 150 seeds m m−2. The selected barley cultivars varied in
canopy characteristics (Figure 1).
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Figure 1. (a) Experimental site 1, consisting of small breeder plots with three summer barley cultivars
and two sowing densities. Representative images of three barley varieties 61 days after sowing (DAS);
(b) genotype HOR 3939, characterized by sparser vegetation cover and small soil gaps; (c) HOR 9707,
characterized by a closed canopy with fewer gaps; and (d) HOR 21770, characterized by a closed and
dense canopy without any gaps.

The second site was a normal production field with a size of 1.5 hectares where winter barley
was sown on 28 September 2017. The variety “Lomerit” was sown with a commonly used density of
300 seeds m−2. The lodging assessment approach developed at the first experimental site was applied
to test its robustness and usability on this conventionally treated field. The experiments were fertilized
with 170 kg nitrogen per hectare and growth inhibitors were applied. The seeds were sown in rows
with 10.9 cm row distance.

2.2. Unmanned Aerial Vehicle Platform and Sensor

The Falcon-8 octocopter (Ascending Technologies GmbH, Krailing, Germany) was used in this
study, which proved to be a reliable platform for different scientific purposes [50–52]. The octocopter
was equipped with a Sony Alpha 6000 (Sony Europe Limited, Weybridge, Surrey, UK) RGB wide-angle
camera (24 megapixel, 6000 × 4000 pixels). A fixed lens with 30 mm focal length was mounted on the
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camera, resulting in 0.54 cm ground sample distance (GSD) at a flight altitude of 35 m above ground
level (AGL). The RGB camera was mounted and integrated in a gimbal and thus the pitch and roll
movements of the UAV could be compensated. Data acquisition was performed in JPEG format with
a shutter speed of 1/1000th second according to a planned waypoints pattern with 60% across and
80% along-track overlap. The images did not contain global positioning system (GPS) information.
Depending on the battery capacity and weather conditions, the flight duration varied between 10 and
15 min.

2.3. Data Processing and Canopy Height Model Generation

Agisoft PhotoScan (Agisoft LLC, Saint Petersburg, Russia, version 1.4.1) was used to process
the single UAV images based on the structure from motion (SfM) technique using algorithms that
identify corresponding images by feature recognition [53]. Details on the SfM algorithms can be found
in several publications [53–55]. Through a defined number of overlapping images, it recreates their
orientation in a spatial three-dimensional (3D) point cloud [56]. In addition to the 3D point cloud as the
first product, it provides a two-dimensional orthomosaic [4] as the second product (Figure 2). Further
evaluation of the 3D point cloud with the necessary processing settings (align photos: High accuracy;
building dense cloud: Quality high) was done in CloudCompare (Version 2.9.1) [57]. Georeferencing
(UTM zone 32N) of the point clouds was based on 6 ground control points (GCPs) in Agisoft PhotoScan
for each experiment.
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Figure 2. Overall flowchart of software products used in this study for data processing and evaluation
of the spatial assessment of canopy height, lodging percentage, and lodging severity. UAV = unmanned
aerial vehicle; GIS = geographic information system; DTM = digital terrain model; CHM = canopy
height model; ROI = region of interest.

The 3D point cloud contains height information above the ellipsoid. To derive the canopy height
model (CHM) the 3D point cloud must be subtracted from an underlying ground model (Figure 2).
Two methods were investigated in this study to derive the ground model:

1. Ground model determination based on a UAV overflight shortly after sowing or after harvest
(UAV-based ground model), and
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2. Ground model determination based on a DTM provided by state authorities (DTM-based ground
model).

Method 1 requires an additional overflight in the time frame shortly after sowing until seedling
emergence with no visible vegetation. By contrast, method 2 is based on the airborne LIDAR dataset
that provides the topsoil surface with a GSD of 1 m. In Germany, DTMs are freely accessible and
updated at least every 6 years [58]. The DTM for the study was acquired in 2015.

The height difference between the ground and the canopy model finally enables the assessment
of CH, as illustrated in Figure 3.
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Figure 3. Visualization of CHM (m) for selected barley plots in side view (left) and nadir top view
(right).

Rasterization of the CHM resulted in a *TIF image with high spatial resolution of 0.01 m (Figure 2),
from which the maximal height value for each grid cell was exported and used for further calculation.

2.4. Unmanned Aerial Vehicle Canopy Height Assessment and Validation

The analysis of the rasterized CHM based on images with 0.85 cm GSD was done in QGIS
(version 3.2.3) open source GIS software, using layers with different levels (Figure 2). Shape files with
a size of 2.4 × 2.8 m were created for each barley plot of the experimental site and used to calculate
the median CH. The size of the shape files was chosen to be slightly smaller than the size of the plots
to avoid border effects in the further processing.

Plant heights were also determined with a measuring ruler in the field to compare them to
the UAV-derived CH of experimental site 1. The median plant height was calculated based on 6
height measurements within each plot, whereby the highest point of the plants was taken. In total,
4 repetitions per sowing density and genotype were recorded 61 days after sowing (DAS).

2.5. Lodging Assessment and Validation

The rasterized CHMs and the shape files (2.4 × 2.8 m) of the plots were also used for the lodging
assessment (Figure 2). Two parameters were calculated in this study: (i) Lodging percentage, which
represents the area affected by lodging, and (ii) lodging severity, which describes how strongly the
canopy is affected by lodging based on the canopy height variation, hereinafter specified in detail.
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2.5.1. Experimental Site 1: Breeding Trials

The first step in the process of quantifying lodging was to determine an objective threshold.
First, the maximum canopy heights (MAXCH) of each genotype were calculated based on images
with 0.85 cm GSD. In the second step, the average MAXCH of all repetitions was used to minimize
the risk of including outliers as maximum values. To determine the UAV lodging percentage, four
lodging percentage thresholds (LPTs) related to the MAXCH were calculated: 80% (80LPT), 70%
(70LPT), 60% (60LPT), and 50% (50LPT) of the MAXCH. For example, 70LPT of a MAXCH of 1 m is
0.7 m. Based on the different LPTs, the lodging percentage could be determined by a simple query
(rasterized CHM < LPT), resulting in a binary image showing areas affected and not affected by
lodging (Figure 4c).
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Figure 4. (a) High-resolution red/green/blue (RGB) orthomosaic used for manual validation of areas
affected by lodging. (b) Calculated CHM (m) in the region of interest. (c) Binary image calculated
based on 70% lodging percentage threshold (70LPT) with areas affected (dark red) and not affected
(green) by lodging.

For the lodging severity assessment a mixture of four thresholds (80LPT, 70LPT, 60LPT, 50 LPT)
related to the MAXCH was used. Based on these thresholds, first the average lodging severity (ALS)
and second the weighted average lodging severity (WALS) were determined according to Equations (1)
and (2). In comparison to ALS, the WALS parameter additionally rates areas affected by lodging,
differentiated to also consider the yield impairment. The applied weighting factors were chosen based
on expertise, adjustments and the expected yield impairment of the LPTs. Sections with CH lower
than 50% (50LPT) of the MAXCH were weighted twice as much as those with CH lower than 80%
(80LPT) of the MAXCH (Equation (2)). The difference between adjacent LPT factors within the WALS
calculation was 0.25, so that the value range for both lodging severity parameters varied between 0
and 100%.

ALS =
80LPT + 70LPT + 60LPT + 50LPT

4
(1)

WALS =
(0.625 ∗ 80LPT) + (0.875 ∗ 70LPT) + (1.125 ∗ 60LPT) + (1.375 ∗ 50LPT)

4
(2)

To validate the accuracy of the UAV lodging percentage, affected areas of each barley plot were
manually determined in a high-resolution orthomosaic (GSD = 0.23 cm). Due to the high spatial
resolution, the lodged areas could be easily identified, resulting in a precise lodging percentage
determination (Figure 4a). These reference data do not consider information on lodging severity and
only provide a differentiation between the presence or absence of lodging.

2.5.2. Experimental Site 2: Farmer Field

For the case study, the above described method was applied to a conventional production field.
Due to the lack of repetition in a classical farmer field, the 90th percentile of canopy height distribution
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was used as MAXCH to minimize the risk of including an outlier as a maximum value. To evaluate the
influence of the spatial resolution on the assessment of lodging percentage and severity, three datasets
with different GSDs were acquired by adjusting flight altitude: 0.54 cm (35 m AGL), 1.09 cm (70 m
AGL), and 1.57 cm (100 m AGL). Data acquisition took place 258 DAS. For validation purposes, the
orthomosaic with 0.54 cm GSD was used to manually determine areas affected by lodging.

3. Results and Analysis

3.1. Comparison of Plant Traits Derived from Unmanned Aerial Vehicle- and Digital Terrain Model-Based
Ground Models

As aforementioned (Section 2.4), the 3D point cloud has to be subtracted from a ground model
to derive the CHM. The UAV- and DTM-based ground models were used in the first experiment
(breeding trials) to determine the average CH (61 DAS) and lodging percentage parameter (75 DAS)
for each barley plot. The CHs derived from both ground models showed a high level of agreement (R2

of 0.99) and provided almost the same results (Figure 5a).
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Figure 5. Scatter plots of (a) average canopy height 61 days after sowing (DAS) and (b) lodging
percentage (70LPT) 75 DAS derived from UAV- and DTM-based ground models of experimental site 1.
Black line represents regression line with 95% confidence interval; blue line represents 1:1 line.

In comparison to CH, the lodging percentage parameter determined for both ground models
using 70LPT resulted in a slightly lower R2 of 0.93 (Figure 5b). Small CH differences can influence the
determined lodging percentage, especially for plots that are less affected by lodging. By considering the
1:1 line, a higher residual deviation can be observed for lower values (Figure 5b). By contrast, values
higher than 50% showed a better fit with the 1:1 line. Although the correlation of the parameter lodging
percentage was slightly lower compared to the UAV CH, it still showed a high level of accuracy.

For experimental site 2, both ground models were investigated based on the parameter lodging
percentage using 70LPT (Table 1). Only a small difference of 3.25% between both ground models could
be observed. Compared to the reference data, the UAV ground model showed a smaller deviation than
the DTM ground model. Due to the slightly higher accuracy, the UAV ground model was used in the
further course of the study.



Remote Sens. 2019, 11, 515 8 of 18

Table 1. Assessment of UAV lodging percentage (70LPT) derived from UAV- and DTM-based ground
models in comparison to reference data for experimental site 2 258 DAS. UAV: Unmanned aerial vehicle;
LPT: lodging percentage threshold; DTM: Digital Terrain Model; DAS: Days after sowing.

Lodging Percentage (%)

UAV-Based Ground Model DTM-Based Ground Model Reference Data

71.81 75.06 70.27

3.2. Unmanned Aerial Vehicle Canopy Height Assessment and Validation

Comparing the UAV-derived CHs of the breeder trial with corresponding plant heights measured
directly in the field, clear deviations in accuracy could be detected, depending on genotype and sowing
density. While genotype HOR 3939, with 0.29 m in low density and 0.18 m in high density, showed
greater differences between UAV CH and reference measurements, genotypes HOR 9707 and HOR
21770 showed only slight differences (Table 2).

Table 2. Comparison of UAV CH and reference measurement 61 DAS (n = 24). SD, standard deviation.

Genotype Sowing Density Median and SD (m) Discrepancy between Reference
Measurements and UAV CH (m)Reference Measurements UAV CH

HOR 3939
Low

0.96 ± 0.02 0.67 ± 0.08 (−) 0.29
HOR 9707 1.00 ± 0.04 0.92 ± 0.05 (−) 0.08

HOR 21770 0.93 ± 0.02 0.90 ± 0.05 (−) 0.03

HOR 3939
High

0.94 ± 0.05 0.76 ± 0.06 (−) 0.18
HOR 9707 1.02 ± 0.03 0.99 ± 0.04 (−) 0.03

HOR 21770 0.93 ± 0.01 0.92 ± 0.01 (−) 0.01

One reason for the more pronounced deviations observed for genotype HOR 3939 was that the
canopy fractional cover was lower than that of the other two cultivars. This resulted in small areas
inside the plot without vegetation cover where soil was visible (Figure 1b). Thus, not only was the top
layer of the canopy acquired, but lower parts were also included in the computation of CHM. These
nonvegetated areas had an influence on the determined median CH and caused underestimation of
the UAV-based CH retrieval. By contrast, genotype HOR 21770 showed a dense and closed canopy
without any gaps (Figure 1c). Thus, only the top canopy layer was considered in CHM generation,
consequently leading to a small deviation of 0.03 m in the low sowing density and 0.01 m in the high
sowing density compared to the reference measurements (Table 2).In general, the UAV CH of the
high-density plots matched better with the plant heights measured in field with an average difference
of 0.07 m in comparison to the lower-density plots with an average difference of 0.13 m. This is also due
to the fact that the lower sowing density resulted in a less dense canopy with gaps and consequently
influenced the UAV CH assessment.

3.3. Lodging Assessment and Validation

3.3.1. Experimental Site 1: Breeding Trials

Permanent displacement of a plant from the upright position can be affected by different lodging
severity, as illustrated in Figure 6. The first example shows a slightly affected canopy where only
low-yield loss can be expected (Figure 6a). The same applies for the plot in Figure 6b, where just a few
small areas are strongly affected by lodging. Additionally, Figure 6c clearly illustrates the capability of
the approach to detect lateral lodging. In contrast to the other examples, the canopy in Figure 6d is
heavily affected by lodging, so that parts of the plot lay completely on the ground.
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Figure 6. RGB images of barley plots showing different types (a–d) of lodging (top) and corresponding
lodging severity derived from the CHM (middle), as well as canopy height distributions with
visualization of different lodging percentage thresholds (LPTs) (bottom).

In order to identify the most suitable threshold for lodging percentage assessment, four LPTs
(80LPT, 70LPT, 60LPT, 50LPT) were compared to the reference data. The UAV lodging percentage
derived from 80LPT has a high root mean square error (RMSE) of 18.78% (Figure 7a). It became clear
that the absolute height differences between MAXCH and 80LPT were small and varied between
0.13 m (HOR 3939, high sowing density) and 0.22 m (HOR 21770, low sowing density) (Table 3).
The naturally occurring plant height variation was higher than the predefined lodging threshold,
resulting in an overestimation of lodging (Figure 7a).

The UAV lodging percentage derived from 70LPT took into account the naturally occurring plant
height variation in the field and led to the highest correlation (R2 = 0.96) (Figure 7b) and the lowest
RMSE. The low amount of scattering indicated that 70LPT can be applied independently from the
amount of lodged plants. No influence of the aforementioned differentiated canopy characteristics
and canopy heights was observed. In comparison to the reference data, the UAV lodging percentage
derived with 60LPT and 50LPT showed lower correlations (Figure 7c,d). Canopy areas affected by
lodging were partly not identified when the lower CH thresholds were applied. Thus, the lodging
percentage was underestimated, especially in strongly affected plots, where the CH threshold was
more relevant.
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Figure 7. Scatter plots of manually determined lodging percentage and calculated UAV-based lodging
percentage for (a) 80LPT, (b) 70LPT, (c) 60LPT, and (d) 50LPT as well as lodging severity parameters (e)
ALS and (f) WALS 75 DAS. Black line represents regression line with 95% confidence interval; blue line
represents 1:1 line (n = 36). LPT: lodging percentage threshold; ALS: average lodging severity; WALS:
weighted average lodging severity, RMSE: root mean square error.
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Table 3. Overview of MAXCH, UAV lodging percentage for four LPTs (80%, 70%, 60%, 50%), ALS and
WALS, and manually determined lodging percentage reference data for different sowing densities and
genotypes 75 DAS (n = 36). MAXCH, maximum canopy height; LPT: lodging percentage threshold;
WALS: weighted average lodging severity; ALS: average lodging severity.

Genotype Sowing
Density

MAXCH
(m)

Lodging Percentage (%) Lodging Severity (%)

80 LPT 70 LPT 60 LPT 50 LPT Reference Data WALS ALS

HOR 3939
Low

0.72 74.70 59.94 41.74 20.76 53.97 43.66 49.29
HOR 9707 0.79 84.90 70.54 54.35 34.48 70.54 55.84 61.07
HOR 21770 1.12 44.59 26.86 16.21 9.77 24.81 20.76 24.35

HOR 3939
High

0.66 94.52 86.90 73.00 50.10 77.27 71.53 76.13
HOR 9707 0.68 98.10 92.86 80.94 58.44 73.28 78.49 82.58
HOR 21770 1.03 92.45 85.75 78.30 69.37 80.90 79.07 81.47

In comparison to the single threshold approach normally used, a combination of different
thresholds can provide additional information for the lodging percentage assessment. The average of
all four thresholds used in the ALS calculation enabled estimation of the lodging percentage on a pixel
basis with high accuracy (R2 = 0.94, RMSE = 8.22%) (Figure 7e). The WALS parameter, by contrast,
provided slightly lower accuracy (R2 = 0.921, RMSE = 11.53%) (Figure 7f), because of the weighting
procedure that was implemented within the parameter calculation (Equation (2)).

The aforementioned lodging severity variation cannot be determined by applying a single
threshold approach, because that only represents a binary distinction between lodged and nonlodged
areas. Consequently, 70LPT, for example, cannot distinguish between slightly affected areas
(Figure 6a,b), where a low-yield impairment can be expected, and heavily affected areas (Figure 6d),
which necessarily cause yield loss. As a second step, the WALS parameter took these CH variations
into account by its inbuilt weighting procedure and therefore can be used as an indicator for
yield impairment.

The reference data displayed in Table 3 clearly show that the lower sowing density with an
average of 50% was less affected by lodging compared to plots with the higher sowing density
averagely affected by 77%. Moreover, 50LPT applied to the lower-density plots allowed detection
of only 35% of lodged area at maximum and 10% at minimum. Contrarily, 70LPT determined a
distinctly higher amount of 71% lodge area at maximum and 27% at minimum. The applied weighting
procedure within the WALS calculation based on the different thresholds was able to consider this
lodging intensity variation and, compared to the lodging percentage derived from 70LPT, led to a
difference of 16% at maximum (Table 3). The disparity between the WALS and reference data was
influenced by the fact that the determined reference data were only an indicator for the presence or
absence of lodging and did not provide information on lodging severity. The plots with high sowing
density showed distinctly larger areas heavily affected by lodging, with 69% at maximum and 50% at
minimum for 50LPT. This higher lodging severity led to a stronger correlation between the WALS and
determined reference data (Table 3). Nevertheless, the variations still present between the different
LPTs resulted in a deviation of 15% at maximum between 70LPT and WALS for the plots with high
sowing density. The average difference considering all genotypes and sowing densities between both
parameters was 12% (SD ± 4.2).

Comparing ALS and WALS clarified that ALS without the weighting procedure slightly
overestimated the lodging severity (Table 3). The difference between WALS and ALS was 6% at
maximum; the average difference was 4% (SD ± 1.1).

3.3.2. Experimental Site 2: Farmer Field

The results for the developed lodging assessment procedure applied to an entire farmer field for
different GSDs are summarized in Table 4. The 70LPT calculated for the highest spatial resolution
(0.54 cm) showed the closest match to the reference data. Therefore, 70LPT again seemed to be most
suitable to assess the lodging percentage. The results for 70LPT determined for the image data with
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lower spatial resolutions (1.09 and 1.57 cm) led to slightly higher deviations at around 6% compared to
the reference data. However, the measured deviations were quite small. The general trend showed
that the lodging percentage of all LPTs increased with decreasing GSDs. Therefore, the results for
60LPT correlated increasingly better with the reference data with lower spatial resolution. This was
influenced by the fact that the lodging severity of the entire farmer field was relatively high (Figure 8)
and the differences between LPTs were small.

Table 4. Comparison of lodging percentage reference data with UAV-based lodging percentage for
four LPTs (80%, 70%, 60%, 50%) and UAV lodging severity for image datasets with different spatial
resolutions. GSD, ground sample distance.

GSD (cm)
Lodging Percentage (%) Lodging Severity (%)

Reference Data
80LPT 70LPT 60LPT 50LPT WALS ALS

0.54 88.83 71.81 66.69 64.75 70.61 73.02
70.271.09 89.79 78.04 68.11 64.36 72.38 75.08

1.57 87.35 78.51 73.05 68.60 74.95 76.88
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determination (0.54 cm GSD) 258 D AS.

The calculated lodging severity parameters showed exactly the same trend regarding the different
spatial resolutions. The WALS parameter only increased by 4% with decreasing GSDs. This underlines
that the GSD has only a small impact on the parameter calculation. The WALS calculated for the dataset
with the highest GSD (Figure 8) provided a high level of agreement compared to the reference data.
The small deviations of only 0.35% for the reference data and 1.2% for 70LPT were almost negligible
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and again were influenced by the high amount of plants strongly affected by lodging determined for
50LPT (Table 4).

The ALS once more probably slightly overestimated the lodging severity because of the missing
weighting procedure. The difference between the two parameters, however, was only 3% at maximum
because of the small variations between the different LPTs (Table 4).

4. Discussion

In the presented study, different methods for high-throughput field phenotyping based on UAV
image data were developed. In the following, the results achieved for the investigations are discussed
in detail: A comparison of UAV-based and DTM-based ground models, comparability between
measured plant heights in the field and UAV-derived CHs, and a spatially precise assessment of
lodging percentage and severity.

The quality assessment of DTMs derived from airborne LIDAR data was mostly based on
statistical methods [16,17,19]. Comparing the LIDAR DTM in this study with a UAV-acquired ground
model, the results showed that the LIDAR DTM can be used as an almost equivalent ground model to
determine accurate CHMs. A direct comparison of the ground models independent from plant traits
was not done, because the average height difference between the two ground models would consider
irrelevant information. Agricultural activities such as deeper wheel tracks were more pronounced
in the UAV ground model because of the distinctly higher spatial resolution in comparison to the
LIDAR DTM. Areas like this were not relevant for the CH and lodging assessment and therefore
can be neglected. The results in this study are independent from the year (2016—Experimental site
1, 2017—Experimental site 2) and location of data collection. Without extensive changes caused by
human impact or agricultural crop rotation, it can be assumed that the renewed interval every six
years provides sufficiently up-to-date information to obtain a precise ground model. However, a
larger-scale experiment considering different locations and years needs to be conducted in the future
to exploit the potential of DTM-based ground models in more detail. Nevertheless, the DTM has the
potential to substitute for the mandatory UAV overflight and thus substantially reduce the effort in
data collection. In this way, the time needed for data collection and data processing to determine
lodging can be reduced by half. The included height information of the topsoil surface every square
meter can be a benefit for large fields or hilly areas.

As already demonstrated in different studies [14,24,26], the UAV-based CH can be highly
correlated with manually determined plant heights collected with a measuring ruler in the field.
The study additionally shows that the UAV-derived information on the spatial height distribution of
the canopy was affected by the canopy structure, the sowing density, and correspondingly also the
sowing heterogeneity. By contrast, manual plant height measurements only represent single points
in the field associated with subjective decisions, in particular with high plot heterogeneity. For that
reason, the UAV-derived CH should be considered as an autonomous trait with a different definition
compared to the plant height measurements. A validation of the UAV CH using the plant height
measurements was correspondingly only possible to a limited extent. The UAV assessment enabled
representative information on plots with high heterogeneity that can be measured manually only with
great effort. Especially for breeders, the CH determination enabled simplifying complex crop and
plant surfaces on an objective scale to estimate genetic effects. Furthermore, canopy homogeneity
can be investigated for entire farmer fields because it carries information on the heterogeneity of the
underlying soil and the factors influencing crop growth.

The developed approach for lodging percentage assessment provided very high accuracy in
breeding trials (R2 = 0.96, RMSE = 7.66%) and led to a slight overestimation of 2% when applied to a
classical farmer field. Compared to other approaches where thresholds are normally chosen based
on subjective decisions without a mathematical approach and reference data for validation [32,45,47],
70LPT enabled the precise detection of lodged areas within the canopy and took into account the
naturally occuring plant height variations in the field. Furthermore, the implemented method for
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detection of an objective threshold considered the aforementioned factors influencing the CHM. The
results showed that the developed method is well suited for barley genotypes with differentiated
canopy structures and therefore has the potential to be applied to other cereal crops, such as wheat.

In the process of determining lodging percentage in rice using structure, texture, and thermal
information derived from UAV images, Liu et al. [44] and Yang et al. [45] obtained high R2 values
greater than 0.9. The accuracy of the lodging percentage determined from textural information,
however, is strongly dependent on a trained support vector machine (SVM) and the dataset used.
Changing illumination conditions during the flight, general illuminance, sun angle, shadow effects,
plant development stages, and color variance between genotypes and species can influence the method.
For that reason, the approach is not transferable without having to adapt the SVM to other datasets.
The quantification of lodging from thermal images is also very challenging, because external factors
such as small changes in wind speed and cloud cover strongly influence the derived canopy surface
temperatures [47,59]. The temperature difference between lodged and nonlodged plants was quite
low, which can only be determined from image data recorded by precisely calibrated camera systems
combined with accurate processing from raw data to final products.

The lodging assessment based on RGB images to derive the relevant CH presented in this study is
almost independent from abiotic and external factors. Just a consumer RGB camera is needed, without
the demand for calibration. In general, only large canopy height variations within a field can cause
problems. In this extreme case, lower grown plants would be labeled as lodged plants. This issue,
however, can be considered in the workflow by applying differentiated MAXCH values in areas with
strong CH variations caused, for example, by different soil or nutrition conditions.

An advantage of the newly developed WALS and ALS lodging severity parameters is that they
additionally take CH variance into account and enable the quantification of yield impairment caused
by lodging. Several studies only considered the presence or absence of lodging, and different lodging
severities as illustrated in Figure 6, were treated equally [32,44,45,47]. Already Fischer and Stapper [39]
and Berry and Spink [34] showed that the yield potential was influenced by the intensity of the
permanent displacement of crops from their upright position. Additionally, Murakami et al. [46]
investigated the usability of UAV data to assess lodging and showed that the yield was stronger
impaired by higher lodging scores and low average CHs. Taking this into account, the novel WALS
parameter was designed to consider the influence of lodging on yield. For the general lodging severity
assessment the ALS parameter is adequate. However, to quantify the yield impairment caused by
lodging, the LTP has to be weighted (WALS) to improve the prediction accuracy. In future studies, the
factors applied to lower LPTs (Equation (2)) should be weighted more strongly and compared to yield
data to investigate the potential in more detail.

The average difference of 12% between the lodging percentages derived from 70LPT and WALS
of experimental site 1 illustrates the need to differentiate between the lodging percentage and lodging
severity. Even though plots with high sowing density were partly strongly influenced by lodging,
there was still variation between the different LPTs, resulting in a reasonable deviation between the
two parameters (Table 3). This discrepancy between 70LPT and WALS decreased with less divergent
LPTs, as ascertained for the farmer field of experimental site 2 (Table 4). The higher the deviation
between LPTs was, the higher the difference between 70LPT and WALS. For the lodging severity in
general the ALS parameter is more objective without the weighting factors. However, for the yield
impairment caused by lodging the LTP has to be weighted to improve the prediction.

The results showed finally, that detection of lodge areas was still possible with the lowest spatial
resolution (1.57 cm GSD) from the highest flight altitude (100 m) without a substantial decline in
accuracy. Nevertheless, for very high accuracy, it is recommended to use images with higher spatial
resolution (0.5 cm GSD), otherwise small patches with differentiated lodging severity will hardly be
detected and severity values will increase.

To summarize, the developed lodging assessment approach can be used for insurance applications,
precision farming, and breeding research. In addition to selecting for genetic lines with higher lodging
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resistance, the different lodging severities and consequently yield impairments can be quantified
as additional information. The approach additionally enabled determination of the recovery rate
of crops. Navabi et al. [60] demonstrated on over 140 different wheat genotypes that the extent of
recovery capability varied among genotypes. Similar results were found by Briggs [41] for barley.
The pixel-based lodging severity information based on the WALS parameter, illustrated in Figure 6, can
be further used in precision farming to generate harvest maps and improve yield quality by avoiding
areas in the harvest process that sprout again after heavy lodging events during the early stages of
plant development.

5. Conclusions

At present, UAV technology is widely used because the data acquisition is relatively easy, timely,
flexible, and cheap. The acquired data can provide timely, detailed information on the current status
of plants, which is valuable for breeders, insurance companies, and farmers. Breeding trials are
particularly difficult to monitor on a regularly basis within a reasonable time, resulting in an increasing
need for faster selection of superior lines. The UAV-based CH assessment provides spatial information
on the canopy height distribution and offers much more information compared to the classical plant
height measurements of single spots in the field. The UAV-derived CH enables simplification of
a complex crop surface with an objective scale to estimate genetic effects. The presented lodging
assessment approach based on 3D canopy structure has many advantages over other methods, because
it is more independent from external conditions, which increases its practicability. Furthermore, the
method makes it possible to estimate yield impairment caused by lodging. Future studies need to be
conducted to evaluate the accuracy in more detail. Finally, it was shown that areas affected by lodging
could be detected with high accuracy even at the lowest spatial resolution (1.57 cm GSD). The higher
the flight altitude is, the shorter the flight time, the smaller the number of recorded images, and the
shorter the processing time. Therefore, fixed-wing UAVs, normally operated at higher altitudes to
cover large areas, can be used for lodging assessment. This also substantially increases the practicability
of the developed method, especially for large agricultural fields. Moreover, first steps were realized in
this study to use an airborne LIDAR DTM provided by national authorities as an alternative ground
model for CHM generation. The comparison of the DTM with the UAV ground model demonstrated
that the DTM information can be used as a ground model and can help to reduce the effort in data
collection and processing. Further investigations are needed to evaluate the robustness of ground
models derived from LIDAR data under different conditions and in different locations.
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