Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = location-privacy-aware LBS

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 526 KiB  
Article
Collaborative Caching for Implementing a Location-Privacy Aware LBS on a MANET
by Rudyard Fuster, Patricio Galdames and Claudio Gutierréz-Soto
Appl. Sci. 2024, 14(22), 10480; https://doi.org/10.3390/app142210480 - 14 Nov 2024
Viewed by 976
Abstract
This paper addresses the challenge of preserving user privacy in location-based services (LBSs) by proposing a novel, complementary approach to existing privacy-preserving techniques such as k-anonymity and l-diversity. Our approach implements collaborative caching strategies within a mobile ad hoc network (MANET), exploiting [...] Read more.
This paper addresses the challenge of preserving user privacy in location-based services (LBSs) by proposing a novel, complementary approach to existing privacy-preserving techniques such as k-anonymity and l-diversity. Our approach implements collaborative caching strategies within a mobile ad hoc network (MANET), exploiting the geographic of location-based queries (LBQs) to reduce data exposure to untrusted LBS servers. Unlike existing approaches that rely on centralized servers or stationary infrastructure, our solution facilitates direct data exchange between users’ devices, providing an additional layer of privacy protection. We introduce a new privacy entropy-based metric called accumulated privacy loss (APL) to quantify the privacy loss incurred when accessing either the LBS or our proposed system. Our approach implements a two-tier caching strategy: local caching maintained by each user and neighbor caching based on proximity. This strategy not only reduces the number of queries to the LBS server but also significantly enhances user privacy by minimizing the exposure of location data to centralized entities. Empirical results demonstrate that while our collaborative caching system incurs some communication costs, it significantly mitigates redundant data among user caches and reduces the need to access potentially privacy-compromising LBS servers. Our findings show a 40% reduction in LBS queries, a 64% decrease in data redundancy within cells, and a 31% reduction in accumulated privacy loss compared to baseline methods. In addition, we analyze the impact of data obsolescence on cache performance and privacy loss, proposing mechanisms for maintaining the relevance and accuracy of cached data. This work contributes to the field of privacy-preserving LBSs by providing a decentralized, user-centric approach that improves both cache redundancy and privacy protection, particularly in scenarios where central infrastructure is unreachable or untrusted. Full article
(This article belongs to the Special Issue New Advances in Computer Security and Cybersecurity)
Show Figures

Figure 1

26 pages, 1093 KiB  
Review
Trustworthy Localization in IoT Networks: A Survey of Localization Techniques, Threats, and Mitigation
by Giovanni Pettorru, Virginia Pilloni and Marco Martalò
Sensors 2024, 24(7), 2214; https://doi.org/10.3390/s24072214 - 29 Mar 2024
Cited by 9 | Viewed by 3508
Abstract
The Internet of Things (IoT) has revolutionized the world, connecting billions of devices that offer assistance in various aspects of users’ daily lives. Context-aware IoT applications exploit real-time environmental, user-specific, or situational data to dynamically adapt to users’ needs, offering tailored experiences. In [...] Read more.
The Internet of Things (IoT) has revolutionized the world, connecting billions of devices that offer assistance in various aspects of users’ daily lives. Context-aware IoT applications exploit real-time environmental, user-specific, or situational data to dynamically adapt to users’ needs, offering tailored experiences. In particular, Location-Based Services (LBS) exploit geographical information to adapt to environmental settings or provide recommendations based on users’ and nodes’ positions, thus delivering efficient and personalized services. To this end, there is growing interest in developing IoT localization systems within the scientific community. In addition, due to the sensitivity and privacy inherent to precise location information, LBS introduce new security challenges. To ensure a more secure and trustworthy system, researchers are studying how to prevent vulnerabilities and mitigate risks from the early design stages of LBS-empowered IoT applications. The goal of this study is to carry out an in-depth examination of localization techniques for IoT, with an emphasis on both the signal-processing design and security aspects. The investigation focuses primarily on active radio localization techniques, classifying them into range-based and range-free algorithms, while also exploring hybrid approaches. Next, security considerations are explored in depth, examining the main attacks for each localization technique and linking them to the most interesting solutions proposed in the literature. By highlighting advances, analyzing challenges, and providing solutions, the survey aims to guide researchers in navigating the complex IoT localization landscape. Full article
(This article belongs to the Collection Wireless Sensor Networks towards the Internet of Things)
Show Figures

Figure 1

17 pages, 1432 KiB  
Article
Mobility-Aware Privacy-Preserving Mobile Crowdsourcing
by Guoying Qiu, Yulong Shen, Ke Cheng, Lingtong Liu and Shuiguang Zeng
Sensors 2021, 21(7), 2474; https://doi.org/10.3390/s21072474 - 2 Apr 2021
Cited by 5 | Viewed by 2541
Abstract
The increasing popularity of smartphones and location-based service (LBS) has brought us a new experience of mobile crowdsourcing marked by the characteristics of network-interconnection and information-sharing. However, these mobile crowdsourcing applications suffer from various inferential attacks based on mobile behavioral factors, such as [...] Read more.
The increasing popularity of smartphones and location-based service (LBS) has brought us a new experience of mobile crowdsourcing marked by the characteristics of network-interconnection and information-sharing. However, these mobile crowdsourcing applications suffer from various inferential attacks based on mobile behavioral factors, such as location semantic, spatiotemporal correlation, etc. Unfortunately, most of the existing techniques protect the participant’s location-privacy according to actual trajectories. Once the protection fails, data leakage will directly threaten the participant’s location-related private information. It open the issue of participating in mobile crowdsourcing service without actual locations. In this paper, we propose a mobility-aware trajectory-prediction solution, TMarkov, for achieving privacy-preserving mobile crowdsourcing. Specifically, we introduce a time-partitioning concept into the Markov model to overcome its traditional limitations. A new transfer model is constructed to record the mobile user’s time-varying behavioral patterns. Then, an unbiased estimation is conducted according to Gibbs Sampling method, because of the data incompleteness. Finally, we have the TMarkov model which characterizes the participant’s dynamic mobile behaviors. With TMarkov in place, a mobility-aware spatiotemporal trajectory is predicted for the mobile user to participate in the crowdsourcing application. Extensive experiments with real-world dataset demonstrate that TMarkov well balances the trade-off between privacy preservation and data usability. Full article
(This article belongs to the Special Issue Privacy, Trust and Incentives in Crowdsensing)
Show Figures

Figure 1

23 pages, 4408 KiB  
Article
A Symbiotic Relationship Based Leader Approach for Privacy Protection in Location Based Services
by Hosam Alrahhal, Mohamad Shady Alrahhal, Razan Jamous and Kamal Jambi
ISPRS Int. J. Geo-Inf. 2020, 9(6), 408; https://doi.org/10.3390/ijgi9060408 - 26 Jun 2020
Cited by 12 | Viewed by 2963
Abstract
Location-based services (LBS) form the main part of the Internet of Things (IoT) and have received a significant amount of attention from the research community as well as application users due to the popularity of wireless devices and the daily growth in users. [...] Read more.
Location-based services (LBS) form the main part of the Internet of Things (IoT) and have received a significant amount of attention from the research community as well as application users due to the popularity of wireless devices and the daily growth in users. However, there are several risks associated with the use of LBS-enabled applications, as users are forced to send their queries based on their real-time and actual location. Attacks could be applied by the LBS server itself or by its maintainer, which consequently may lead to more serious issues such as the theft of sensitive and personal information about LBS users. Due to this fact, complete privacy protection (location and query privacy protection) is a critical problem. Collaborative (cache-based) approaches are used to prevent the LBS application users from connecting to the LBS server (malicious parties). However, no robust trust approaches have been provided to design a trusted third party (TTP), which prevents LBS users from acting as an attacker. This paper proposed a symbiotic relationship-based leader approach to guarantee complete privacy protection for users of LBS-enabled applications. Specifically, it introduced the mutual benefit underlying the symbiotic relationship, dummies, and caching concepts to avoid dealing with untrusted LBS servers and achieve complete privacy protection. In addition, the paper proposed a new privacy metric to predict the closeness of the attacker to the moment of her actual attack launch. Compared to three well-known approaches, namely enhanced dummy location selection (enhanced-DLS), hiding in a mobile crowd, and caching-aware dummy selection algorithm (enhanced-CaDSA), our experimental results showed better performance in terms of communication cost, resistance against inferences attacks, and cache hit ratio. Full article
Show Figures

Figure 1

7 pages, 209 KiB  
Editorial
Current Trends and Challenges in Location-Based Services
by Haosheng Huang and Georg Gartner
ISPRS Int. J. Geo-Inf. 2018, 7(6), 199; https://doi.org/10.3390/ijgi7060199 - 28 May 2018
Cited by 39 | Viewed by 12211
Abstract
Location-based services (LBS) are a growing area of research. This editorial paper introduces the key research areas within the scientific field of LBS, which consist of positioning, modelling, communication, applications, evaluation, analysis of LBS data, and privacy and ethical issues. After that, 18 [...] Read more.
Location-based services (LBS) are a growing area of research. This editorial paper introduces the key research areas within the scientific field of LBS, which consist of positioning, modelling, communication, applications, evaluation, analysis of LBS data, and privacy and ethical issues. After that, 18 original papers are presented, which provide a general picture of recent research activities on LBS, especially related to the research areas of positioning, modelling, applications, and LBS data analysis. This Special Issue together with other recent events and publications concerning LBS show that the scientific field of LBS is rapidly evolving, and that LBS applications have become smarter and more ubiquitous in many aspects of our daily life. Full article
(This article belongs to the Special Issue Location-Based Services)
10 pages, 269 KiB  
Article
A Distance Bounding Protocol for Location-Cloaked Applications
by Cristián Molina-Martínez, Patricio Galdames and Cristian Duran-Faundez
Sensors 2018, 18(5), 1337; https://doi.org/10.3390/s18051337 - 26 Apr 2018
Cited by 1 | Viewed by 2951
Abstract
Location-based services (LBSs) assume that users are willing to release trustworthy and useful details about their whereabouts. However, many location privacy concerns have arisen. For location privacy protection, several algorithms build a cloaking region to hide a user’s location. However, many applications may [...] Read more.
Location-based services (LBSs) assume that users are willing to release trustworthy and useful details about their whereabouts. However, many location privacy concerns have arisen. For location privacy protection, several algorithms build a cloaking region to hide a user’s location. However, many applications may not operate adequately on cloaked locations. For example, a traditional distance bounding protocol (DBP)—which is run by two nodes called the prover and the verifier—may conclude an untight and useless distance between these two entities. An LBS (verifier) may use this distance as a metric of usefulness and trustworthiness of the location claimed by the user (prover). However, we show that if a tight distance is desired, traditional DBP can refine a user’s cloaked location and compromise its location privacy. To find a proper balance, we propose a location-privacy-aware DBP protocol. Our solution consists of adding some small delays before submitting any user’s response. We show that several issues arise when a certain delay is chosen, and we propose some solutions. The effectiveness of our techniques in balancing location refinement and utility is demonstrated through simulation. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

14 pages, 874 KiB  
Article
A Fine-Grained and Privacy-Preserving Query Scheme for Fog Computing-Enhanced Location-Based Service
by Xue Yang, Fan Yin and Xiaohu Tang
Sensors 2017, 17(7), 1611; https://doi.org/10.3390/s17071611 - 11 Jul 2017
Cited by 20 | Viewed by 5592
Abstract
Location-based services (LBS), as one of the most popular location-awareness applications, has been further developed to achieve low-latency with the assistance of fog computing. However, privacy issues remain a research challenge in the context of fog computing. Therefore, in this paper, we present [...] Read more.
Location-based services (LBS), as one of the most popular location-awareness applications, has been further developed to achieve low-latency with the assistance of fog computing. However, privacy issues remain a research challenge in the context of fog computing. Therefore, in this paper, we present a fine-grained and privacy-preserving query scheme for fog computing-enhanced location-based services, hereafter referred to as FGPQ. In particular, mobile users can obtain the fine-grained searching result satisfying not only the given spatial range but also the searching content. Detailed privacy analysis shows that our proposed scheme indeed achieves the privacy preservation for the LBS provider and mobile users. In addition, extensive performance analyses and experiments demonstrate that the FGPQ scheme can significantly reduce computational and communication overheads and ensure the low-latency, which outperforms existing state-of-the art schemes. Hence, our proposed scheme is more suitable for real-time LBS searching. Full article
(This article belongs to the Special Issue Security and Privacy Challenges in Emerging Fog Computing)
Show Figures

Figure 1

Back to TopTop