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Abstract: The Internet of Things (IoT) has revolutionized the world, connecting billions of devices that
offer assistance in various aspects of users’ daily lives. Context-aware IoT applications exploit real-
time environmental, user-specific, or situational data to dynamically adapt to users’ needs, offering
tailored experiences. In particular, Location-Based Services (LBS) exploit geographical information to
adapt to environmental settings or provide recommendations based on users’ and nodes’ positions,
thus delivering efficient and personalized services. To this end, there is growing interest in developing
IoT localization systems within the scientific community. In addition, due to the sensitivity and
privacy inherent to precise location information, LBS introduce new security challenges. To ensure a
more secure and trustworthy system, researchers are studying how to prevent vulnerabilities and
mitigate risks from the early design stages of LBS-empowered IoT applications. The goal of this
study is to carry out an in-depth examination of localization techniques for IoT, with an emphasis on
both the signal-processing design and security aspects. The investigation focuses primarily on active
radio localization techniques, classifying them into range-based and range-free algorithms, while
also exploring hybrid approaches. Next, security considerations are explored in depth, examining
the main attacks for each localization technique and linking them to the most interesting solutions
proposed in the literature. By highlighting advances, analyzing challenges, and providing solutions,
the survey aims to guide researchers in navigating the complex IoT localization landscape.

Keywords: internet of things (IoT); wireless sensor network (WSN); localization; security; trustworthiness;
threats models

1. Introduction

The Internet of Things (IoT) has rapidly revolutionized humans’ interactions with the
environment and reshaped their daily routines. This technology is applicable across a wide
spectrum of sectors, ranging from smart homes and healthcare to industrial automation
and transportation, taking a central role in each. To grasp the profound impact of IoT
on our lives, consider that there are currently an estimated 15 billion connected devices
worldwide, and this number is poised to increase in the coming years, steadily [1]. The
increasing promise of the IoT for specific applications like home automation, smart farming,
and industry 4.0 can be largely attributed to the rising prevalence and advancements in
Machine-to-Machine (M2M) communication [2]. This represents a departure from the
conventional Machine-to-Human (M2H) interactions that we have been accustomed to
through the traditional Internet.

In this evolving landscape, where devices increasingly require less human interaction,
the significance of context awareness becomes paramount. The term context awareness,
which originated more than two decades ago, can be defined in the context of IoT as
the ability of devices to collect and use data about their surroundings, enabling them to
make more informed and context-relevant decisions [3]. The data collected, referred to as
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contextual information, encompass a wide range of categories, including location, times-
tamp, user behaviors, proximity to other devices, battery level, and various other factors.
One of the most interesting contextual information in the IoT landscape is the location
of objects in the application scenario, which gives rise to a distinct category of services
known as Location-Based Services (LBS) [4]. Focusing on the IoT domain, one can find a
variety of LBS cases in the literature. These include the provision of navigation guidance
for warehouse robots [5], the ever-expanding realm of location-based marketing [6], and
services to safeguard the well-being of elderly people through precise tracking of their
activities and movements in the comfort of their homes [7]. These are just a few examples
that give an idea of the many ways in which LBS can significantly affect humans’ daily
lives. As the use of IoT technologies has grown, so have the security issues associated with
it [8]. Nowadays, a secure-by-design approach is an absolute imperative when designing
IoT systems, particularly those as sensitive and vulnerable as location-related ones.

Building on the premises established in this introduction, this study aims to provide
a comprehensive review of the literature on IoT localization techniques, threat models,
and solutions, differentiating itself from existing surveys. The key contributions of this
survey are as follows:

• C1: an innovative methodology that thoroughly reviews the existing literature on IoT
localization, integrating techniques, and security considerations.

• C2: a classification of active radio-based localization techniques into range-based and
range-free, with emphasis on understanding and comparing the different approaches
while discussing their applicability to different use cases.

• C3: a mapping between each localization method and the corresponding threat models
and proposed mitigation solutions documented in the literature.

• C4: guidelines to help researchers identify key references in the literature, serving as a
valuable resource to facilitate the progress of their work in this specialized field.

The rest of this survey is structured as follows. In Section 2, we illustrate the method-
ological approach we have followed in our review, as well as the reference scenario, and
briefly summarize the state of the art in terms of surveys touching different aspects of IoT
localization, including techniques, threat models, and solutions (C1). Section 3 provides a
broad review of the state of the art of localization techniques used in IoT environments (C2).
In Section 4, our attention turns to exploring the threat models, detection, and mitigation
approach for localization systems that have been documented in the existing literature (C3).
To conclude, Sections 5 and 6 offer a summary of the survey results, providing guidelines
to enhance the readability of the paper, discussing the state of the art gathered from the
survey, and making concluding remarks (C4).

A list of acronyms that are used in the manuscript is given in Table 1 to facilitate readability.

Table 1. List of used acronyms (in alphabetical order).

Acronym Definition Acronym Definition

ANN Artificial Neural Network AoA Angle of Arrival

AP Access Points BLE Bluetooth Low Energy

CNN Convolutional Neural Network CSI Channel State Information

CSO Chicken Swarm Optimization DoS Denial-of-Service

DV–Hop Distance Vector–Hop IIoT Industrial Internet of Things

IoT Internet of Things LBS Location-Based Services

LoRa Long Range LOS Line Of Sight

LPWAN Low-Power Wide-Area Network LS Least Squares

LSTM Long Short-Term Memory LTE Long-Term Evolution
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Table 1. Cont.

Acronym Definition Acronym Definition

M2H Machine-to-Humans M2M Machine-to-Machine

MIMO Multiple-Input and Multiple-Output ML Machine Learning

MLE Maximum Likelihood Estimation NB-IoT Narrowband Internet of Things

NLOS Non-Line Of Sight NLS Non-linear Least Squares

PSO Particle Swarm Optimization RIS Reconfigurable Intelligent Surfaces

RTT Round-Trip Time RSS Received Signal Strength

SDP Semi-Definite Programming SDR Software-Defined Radio

SNR Signal-to-Noise Ratio SWLS Secure Weighted Least Squares

TDoA Time Difference of Arrival ToA Time of Arrival

ToF Time of Flight UWB Ultra-WideBand

WLS Weighted Least Squares WSN Wireless Sensor Network

2. Background
2.1. Methodological Approach

Our literature search work for writing this survey follows a well-defined methodology.
We mainly used major search databases, including MDPI, IEEE Xplore, Elsevier, and Springer
for the systematic selection of the most relevant articles. The selection process was guided
by specific keywords, namely, localization, IoT, secure, reliable, attack, and malicious. To
maintain the highest level of accuracy and topicality in our survey, we chose our search
criteria precisely, narrowing our focus to works published since 2018. In addition, regarding
articles with more than 1 year since their publication, we prioritized those that obtained
citations, thus incorporating their literary impact into our analysis.

The survey comprises two blocks. The first extensively covers IoT localization tech-
niques, offering a comprehensive domain overview. In the subsequent block, we delve
deeply into the primary categories of attacks on localization systems, categorizing them
based on the malicious user’s intent and presenting identification methods for each. This
segmentation enhances our understanding of the diverse threat landscape and its varied
impacts on the localization process.

2.2. Review of Related Survey Works

In the literature, numerous research studies have individually addressed different
aspects of IoT localization, including techniques, threat models, and solutions. In Table 2,
we present a comparative analysis of these works, highlighting their main areas of interest.
The following is a brief summary of these main areas, i.e., IoT localization techniques, threat
models, and their corresponding solutions.

From the perspective of IoT localization techniques, several surveys can be found in
the literature, which underscore the growing interest of researchers in this particular area.
The authors of [9] offer a comprehensive analysis of localization techniques, alongside the
development of a hierarchical taxonomy. This study classifies the localization approaches
into two distinct categories within the context of IoT scenarios: Self-Determining Method
and Training-Dependent Method. In [10–12], the authors propose a comprehensive survey,
simultaneously conducting evaluations using metrics such as energy efficiency, availability,
cost, reception range, latency, scalability, and accuracy. The approach in [13] aligns with
previous methods, with an added analysis addressing error sources and their mitigation.
The work presented in [14] focuses on different outdoor and indoor environments and
various contexts, including Wireless Sensor Networks (WSNs), IoT, cognitive radio net-
works, and 5G networks. In contrast, the works proposed in [15,16] focus their attention
on specific IoT scenarios, those outdoors, evaluating the accuracy and robustness of the
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algorithms in harsh environments characterized by obstacles such as buildings. The studies
presented in [17,18] focus their survey on Machine Learning (ML)-based fingerprinting
localization approaches, providing insight into a previously underexplored branch. Even
the work discussed in [19] delves into approaches that have received limited attention in
the literature, offering a survey that focuses on visible light-based localization and assesses
its potential. Recent comprehensive surveys on these aspects are [20,21], notable for their
up-to-date coverage of this evolving field.

Table 2. Summary of surveys dealing with IoT localization techniques, threats, and solutions.

Areas of Interest Year Reference Distinctive Characteristics

IoT localization techniques

2018 [9] Compare and categorize existing works within an IoT infrastructure
framework, and offer a comprehensive taxonomy.

2019

[10] Evaluate different proposed systems through key IoT requirements

[11] Investigate the impact of localization in the modern IoT and the
main challenges

[14] Focus on MDS-based localization techniques for several scenarios

2020

[13] Overview of error sources and mitigation, performance evaluation, and
an analysis of the applications, opportunities, and challenges.

[17] Focus on ML and intelligent algorithms for Fingerprint-Based techniques

[19] Overview of promising techniques based on visible light

[15] RF-based localization in Smart Cities scenarios

2021

[16] GNSS-free outdoor localization techniques

[12] Comparative analysis based on different performance parameters

[18] ML-based Wi-Fi RSS fingerprinting schemes and investigation of training
datasets in the literature

2022

[20] In-depth analysis of LBSs, latest applications, and major vendor profiles

[21] Focus on the strengths and weaknesses inherent in each localization
technology and technique

Threats models and solutions

2017 [22] Security and privacy for LBS from a technical and legal perspective

2020 [23] Advances in location privacy protection technology in the context of SIoV

2022 [24] Privacy attacks in location and corresponding solutions, with a focus
on VANETs

Joint analysis Our survey aims to cover this gap in the literature by presenting a
joint analysis of IoT localization techniques, threats models, and solutions

In the recent literature, there is a scarcity of comprehensive studies dedicated to
addressing security issues in the context of IoT localization. Among the most interesting
contributions, we find [22], where several issues related to security and privacy in IoT-based
location systems are analyzed, with a focus on both the technical and legal perspectives.
Continuing our analysis in the specific intersection of IoT location and vehicular networks,
the survey described in [23] systematically examines recent advances in location privacy
protection technology in the context of the Social Internet of Vehicles. In addition, the
authors introduce and evaluate the performance of three distinct types of user data privacy
protection technologies. With the same focus on vehicular ad hoc networks, the authors
of [24] offer a comprehensive review of location privacy attacks and propose solutions to
mitigate the problems arising from such attacks in these particular IoT applications.

In contrast to the studies described in this section, our study seeks to make a more
substantial contribution by providing an overview aimed at paving the way for researchers
in this field. Our survey includes the following key elements in a single document:
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• A comprehensive review of the main IoT localization techniques and algorithms found
in the literature;

• An in-depth investigation of hybrid solutions, an emerging approach that has not been
comprehensively explored in existing literature surveys;

• An analysis of associated security threats, along with potential solutions proposed in
the literature for each category.

2.3. Reference Scenario

The reference scenario for our analysis is visually represented in Figure 1 [20,25]. This
scenario involves the deployment of Nanchors wireless devices acting as anchors, each of
which has known locations, and a target whose location is to be estimated. The i-th anchor
deployed in the environment (i = 1, 2, . . . , Nanchors) has coordinates aaai = [xi, yi, zi], whereas
the target has coordinates ttt = [xt, yt, zt]. To facilitate localization, anchors transmit packets
to the target, which collects and analyzes them. Depending on whether the localization
system is device-based, device-assisted, or network-based, the collected measurements
are used for localization estimation directly by the target or are routed to the gateway
toward more powerful devices for further processing. Consider that in an IoT environment,
where connectivity such as Wi-Fi is already established, the existing infrastructure can be
leveraged instead of introducing additional devices. In this context, Access Points (APs) and
any connected device can effectively take on the role of anchors as shown in the reference
scenario. Note that our survey focuses exclusively on radio-based techniques. Therefore,
our investigation does not include methods that do not depend on radio information, such
as those that rely on inertial sensors.

Figure 1. Reference scenario for the proposed analysis [20,25].

In our reference scenario, it is critical to recognize the potential risks posed by malicious
users. This study, in particular, delves into vulnerabilities at the physical layer within the
architecture, highlighting potential threats from malicious users capable of infiltrating the
network and gaining control of one or more anchors. The primary goal of a malicious user
could be twofold: first, to intentionally manipulate the positioning system by introducing
erroneous data (e.g., false reference position), thus causing an incorrect estimate of the
target’s location; second, to disrupt the entire location process by compromising multiple
anchors or making them inoperable (e.g., jamming attacks). The methods in which an
attacker can interfere with these localization systems will be described comprehensively in
detail in Section 4. The presence of a potential attacker who can compromise the security of
a subset of M < Nanchors anchor nodes is assumed.



Sensors 2024, 24, 2214 6 of 26

Even though attacks on the deeper parts of the infrastructure (e.g., fog, edge, and
cloud layers) can have an impact on the localization process, this discussion falls beyond
the scope of this manuscript. The focus of this survey is indeed on the local IoT network
and the corresponding wireless communications among the nodes inside it.

3. IoT Localization Techniques

IoT localization techniques can be classified into two main groups: radio range-free
and radio range-based methods [26]. Radio range-free techniques, on the other hand, do not
rely on direct distance measurements. Instead, they exploit information such as network
connectivity patterns, the number of hops between nodes, or the knowledge of the radio
environment to approximate the position of the target [27]. Radio range-based localization
involves measuring distances between anchor points and target devices; these distances are
then used to estimate the target’s position using various approaches, including methods
based on triangulation and multilateration [28]. The selection between these two categories
depends largely on the specific needs and limitations of the IoT application. Radio range-
based techniques offer higher accuracy but require additional hardware, involve higher
energy consumption, and often involve complex implementation. In contrast, radio range-
free techniques, which require no additional hardware, are energy efficient, and have a
simpler configuration, generally offer lower accuracy [29].

Finally, there is a third category of hybrid localization approaches that aim to exploit
the advantages and limit the drawbacks of different techniques and technologies to improve
performance [30]. These methods aim to enhance the localization accuracy and robustness
by joining different techniques, such as combining proximity with multilateration-based
approaches. Alternatively, they leverage a single technique but achieve integration with
multiple communication technologies through a data fusion approach, for instance, by
combining Wi-Fi and Bluetooth data.

When focusing on nodes involved in the localization system, one more classification
can be established: active nodes, which involve data transmission, and passive nodes, such
as Reconfigurable Intelligent Surfaces (RISs) that rely on reception and reflection [31,32] to
improve the efficiency of localization systems, especially in difficult environments such as
shaded areas. Even though this second category of devices is worthy of investigation, this
goes beyond the scope of this review. Therefore, in this review, we will focus primarily on
systems that use exclusively active nodes.

In this section, we present an in-depth review of the literature, focusing on the main
localization techniques used in the IoT environment. Figure 2 presents a comprehensive
taxonomy. To facilitate navigation within the proposed categorization and provide information
on the works discussed, a summary table will be presented at the end of the section.

Figure 2. Taxonomy of IoT localization techniques.
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3.1. Radio Range-Free

Fingerprinting—This is the dominant radio range-free localization technique, as shown
by the numerous existing works in the literature. This technique consists of two phases,
illustrated in Figure 3. In the offline phase, Channel State Information (CSI) and/or RSS
measurements are collected at various locations in the scenario to build a fingerprint
database. In the online phase, the target moves within the scenario, acquiring RSS measure-
ments that are compared with database entries to estimate its most likely location [33].

Figure 3. Fingerprinting-based localization.

While this method offers the advantage of avoiding complex calculations for position
estimation, its dependence on the offline phase makes it unsuitable for dynamic scenarios
since significant changes in the environment would require it to be repeated. In [34], the
authors introduce an innovative Wi-Fi fingerprinting-based approach for indoor scenarios,
addressing the challenges of the offline phase through a dynamic radio map update system
that eliminates the need for costly and time-consuming manual surveys.

This localization technique relies heavily on ML methods for accurate position esti-
mation. Various models, including Random Forest, K-Nearest Neighbors (KNNs), Long
Short-Term Memory (LSTM), and Convolutional Neural Networks (CNNs), are used for
position estimation, each of which offers different advantages and capabilities as can
be seen from the various works in the literature. The authors of [35] introduce a new
application of the standard Particle Swarm Optimization (PSO) algorithm to improve
indoor fingerprint-based localization. The study demonstrates a significant improvement
in accuracy over Random Forest-based approaches. Wi-Fi returns to center stage in [36],
presenting EdgeLoc, an indoor localization system designed to address hardware-induced
RSS variations, multipath reflections, and computational constraints. Leveraging Capsule
Neural Network models, a multistep data stream for RSS fingerprint processing, and an
edge–IoT framework, EdgeLoc achieves real-time localization with high performance com-
pared to standard approaches. Shifting focus, ref. [37] addresses precise localization in
indoor scenarios with a heterogeneous infrastructure, including devices like Raspberry Pi
and Arduino, along with various technologies such as ZigBee, BLE, and 5G. The authors
introduce the DELTA ML model, applied to a multi-layer radiomap, improving vertical
and horizontal localization based on fingerprinting. The model initiates the localization
process by estimating 2D positions and then determining 3D positions through recur-
sive predictions, promising advances in navigating complex indoor environments. ML is
at the forefront also in [38,39], where several deep learning models, including Artificial
Neural Network (ANN), LSTM, and CNN, are employed to improve the performance of
fingerprint-based localization algorithms over traditional methods. The effectiveness of
these systems is demonstrated through experimental validation using both open-source
datasets and real-world testing.
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Connectivity Information—Range-free localization algorithms, particularly those that
exploit connectivity information, are known for their low computational and practical com-
plexity, as well as their cost-effectiveness, which makes them attractive for IoT applications.
This technique also has low granularity, relying on hop dependence rather than physical
distance. Unlike the other techniques in this category, fingerprinting has a granularity that
depends on the mapping process during the offline phase, i.e., how many points in the envi-
ronment are included in the radio map. Therefore, the cost-effectiveness advantages come
at the cost of lower accuracy in location estimation than the other approaches discussed in
this research [27].

A widely used approach in this category is Distance Vector–Hop (DV–Hop), which
employs a hop-based propagation model in which anchor nodes begin the transmission of
location information with a hop count set to zero. The nodes update their tables as packets
are received, replacing hop counts with lower values. This iterative process continues
until all nodes determine the minimum hop count for each node. Next, the anchor nodes
estimate the average hop distances and disseminate this information to neighboring nodes.
Target nodes then use these data to calculate distances to anchor nodes through a three-
way method, refining their position estimates within the network [40]. A representative
topology of this approach is shown in Figure 4.

Figure 4. DV–Hop localization topology.

Recent literature presents several approaches aimed at improving traditional DV–
Hop algorithms. In [41], a new MATLAB implemented algorithm is proposed, which
incorporates distance error correction metrics to improve accuracy and minimize errors
in radio range-free localization. Shifting the focus to energy efficiency, [42] introduces a
three-step algorithm: the initial discovery of nodes through improved MAC-level commu-
nication, the categorization of discovered nodes into direct and indirect sets to minimize
communication energy consumption, and finally the introduction of a correction factor
to reduce localization errors. Error minimization is the main objective in [43], where four
innovative localization algorithms incorporating the DV–Hop algorithm with PSO are
presented. Simulations demonstrate the superiority of these approaches over standard
ones. In contrast, [44] proposes three new approaches, integrating DV–Hop and Chicken
Swarm Optimization (CSO), aiming to establish higher efficiency and accuracy compared to
approaches employing PSO. Finally, to improve the accuracy and simplify the complexity
of DV–Hop-based algorithms, the authors of [45] propose two algorithms. One is based
on centralized connectivity and optimizes accuracy by considering real connectivity con-
straints. The other, based on distributed connectivity, achieves near-optimal performance
in distributed networks by focusing on the real connectivity within two hops, without
including the connectivity of all nodes.

3.2. Radio Range-Based

Proximity—This localization technique relies on measurements that indicate whether
two devices are within a certain radius or connected, rather than determining precise
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distances. In fact, the estimated position of the target is given by the position of the nearest
connected anchor as illustrated in Figure 5. Due to its simplicity and minimal requirements
in terms of energy and computational resources, this technique is widely used in the
literature [46]. It is particularly suitable for IoT scenarios where highly accurate location
estimates are not a primary concern.

Figure 5. Proximity-based localization.

In their study, the authors of [47] explored the potential of Bluetooth Low Energy (BLE)
beacons to improve indoor localization by comparing three of the most widely used devices
in the literature and evaluating their power consumption and proximity accuracy. The
same technology was used in [48], where its effectiveness in improving the user experience
inside a museum was demonstrated. Another promising technology for IoT was proposed
in [49], where different Sigfox-based proximity localization methods were introduced.
The initial approach estimates location by exploiting the known position of the strongest
Sigfox base station in reception, while the second and third algorithms introduce the notion
of clusters and work on it to improve performance. In [50], the authors evaluated the
accuracy of a proximity-based localization algorithm by comparing it with other radio
range-based and radio range-free methods. The evaluation was carried out in a large-scale
urban environment using a public Narrowband Internet of Things (NB-IoT) network.

Received Signal Strength (RSS)—A common approach in IoT for position estimation is
Received Signal Strength (RSS)-based multilateration. As depicted in Figure 6, it involves
measuring the RSS from the established anchor nodes, estimating the distances between
the target and each anchor, and using multilateration to determine the position of the
target. Typically, multilateration approaches use algorithms based on Least Squares (LS), a
method in which a system of equations formed by the target–anchor distances is solved
by minimizing the sum of the squares of the differences between the actual and estimated
values, thereby determining the most probable position. In general, RSS-based approaches
offer a cost-effective solution by leveraging wireless transceivers embedded in devices, the
existing network architecture, and requiring minimal computational power, aligning with
IoT [51] requirements.

For these reasons, methods belonging to this category are widely explored in the
literature. In [52], a new approach addresses the challenges posed by measurement imper-
fections and anchor reliability using Dempster–Shafer theory, non-Gaussian probability
density functions, and realistic modeling of RSS deviations. Experimental results show
excellent performance in various IoT environments, from residential to laboratory envi-
ronments. While staying in the indoor environment, in [53], an innovative algorithm is
introduced that exploits the principles of multilateration and Non-linear Least Squares
(NLS). Experimental tests reveal its superior performance compared with existing algo-
rithms, especially in terms of accuracy. The paper [54] explores RSS-based localization,
employing two distinct technologies: Wi-Fi and Long-Term Evolution (LTE). The choice
between these technologies is contingent upon the indoor or outdoor nature of the target
location. The studies presented in [55,56] analyze the application of Long-Range (LoRa)
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technology for RSS-based localization. Tested in different scenarios, both outdoor and
indoor, these studies demonstrate the promising potential of LoRa technology in terms of
position estimation accuracy and robustness to various forms of interference. Exploring
intricate and futuristic IoT scenarios, the authors of [57] address the challenges of WSNs
in underwater and underground environments. They emphasize the importance of ad-
dressing the directionality issues associated with these localization approaches in such
scenarios.

Figure 6. Principle of multilateration-based localization that uses measurements of RSS, ToF, ToA,
TDoA, PDoA.

Time of Flight (ToF) and Time of Arrival (ToA)—Methods based on Time of Flight (ToF)
and Time of Arrival (ToA) exploit the signal propagation time to calculate the distance
between the anchors and the target, followed by multilateration to estimate the position.
This operating principle aligns with the concept illustrated in Figure 6. Although techni-
cally attractive, these methods have a significant limitation due to the sensitivity to clock
synchronization errors between devices. Practical application is further constrained by the
impact of obstacles that deflect the emitted signals, presenting additional challenges in
indoor [10] scenarios.

In [58], the authors introduced a ToF algorithm that surpasses traditional approaches.
This algorithm integrates joint clock synchronization, LS estimation for emission and
arrival time, and Maximum Likelihood Estimation (MLE) using a Gaussian noise model to
overcome the challenges associated with this technique. To address some synchronization
challenges, a system employing BLE technology for continuous time synchronization nodes
was presented in [59]. Experimental tests demonstrated a synchronization error on the
order of microseconds, affirming the system’s compatibility with ToF-based positioning.
The work in [60] introduced an embedded optimization approach based on nonlinear LS
and two-way ToA measurements. Experimental results on a UWB network demonstrated
the achievement of subdecimal localization accuracy, making it suitable for applications
with high requirements.

Time Difference of Arrival (TDoA)—Given the challenges posed by ToA and ToF, in the
recent literature, alternative approaches with similar principles are explored, with Time
Difference of Arrival (TDoA) emerging among the solutions. This methodology simpli-
fies the implementation by requiring synchronization only between anchor nodes [61].
Distances are now computed by analyzing differences in signal arrival times from differ-
ent anchors, and then the position is estimated through multilateration in line with the
procedure depicted in Figure 6.

Another significant problem inherited from ToA and ToF is the vulnerability con-
cerning Non-Line-Of-Sight (NLOS) paths, causing errors in estimating the true distance
between nodes. In [62], this challenge is tackled through two formulations: one jointly
estimates the source position and NLOS error, reducing the upper bounds of errors; the
other introduces a balancing parameter and transforms the measurement model to over-
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come issues caused by the triangle inequality in traditional robust LS. The NLOS problem
was addressed also in [63], where the authors introduced a new method based on opti-
mization with Semi-Definite Programming (SDP) to mitigate these errors. The authors
of [64] addressed another propagation problem that is given by strong multipath chan-
nel components in indoor environments. The work introduced a method that exploits
broadband signal generation on low-power narrowband transceiver chips. The proposed
approach, validated through a measurement campaign with Software-Defined Radio (SDR)
platforms, demonstrates effective usability within the bandwidth limits of the 2.4 GHz ISM
band while achieving excellent performance. The study in [65] focuses on exploring UWB
localization using TDoA in scenarios where anchors are placed very close together and,
consequently, the possibility of being placed symmetrically, thus compromising accuracy.
This challenge is overcome by a strategy based on selecting subsets of anchors and fusing
estimations across multiple subsets. Building upon this, the research is further expanded
in [66], where the proposed algorithm is applied to applications associated with mobile
target tracking. The study in [67] demonstrates the feasibility of TDoA-based localization
with low-power, low-cost technologies such as LoRa, in indoor and outdoor scenarios. The
study particularly focuses on the localization of individuals, specifically those belonging
to vulnerable groups, making it ideal for applications related to human search and res-
cue. LoRa is also the focus of [68], where five TDoA algorithms are validated through
simulations and field measurements.

Phase Difference of Arrival (PDoA)—As mentioned earlier, each signal has arrival time
differences based on the distance between the target and the anchor, resulting in phase dif-
ferences. This provides the basis for the Phase Difference of Arrival (PDoA) method, which
determines the distances between the target and the anchor using these differences [69].
Then, the position is estimated through multilateration as shown in Figure 6.

The study detailed in [70] explores a new approach to extend the range of RFID
tracking using low-power Tunneling Tags through the PDoA method in the frequency
domain. The proposal is shown to be effective in both indoor and outdoor scenarios,
demonstrating excellent performance in terms of accuracy, robustness to interference,
and power efficiency. In [71], the advantages of employing multi-frequency PDoA in
Low-Power Wide-Area Networks (LPWANs) were investigated. The proposed adaptation
addresses limitations related to temporal resolution, providing increased accuracy and
robustness without compromising energy efficiency and spectrum utilization. The use of a
multi-frequency approach was also employed in [72], which presented a new method for
indoor autonomous vehicle localization. The developed scheme integrates dual-frequency
PDoA, MLE, and a localization algorithm based on SDP and Kalman filtering, achieving
excellent performance in terms of accuracy and resilience to interference of any nature.
Staying within the context of challenging scenarios, the authors of [73] once again show
the potential of UWB technology by proposing a high-precision PDoA positioning method
for elderly care in smart homes. The proposed method provides excellent experimental
results, requiring minimal NLOS compensation and demonstrating its robustness in these
challenging environments.

Angle of Arrival (AoA)—In Angle of Arrival (AoA) localization, the position is esti-
mated at the center of gravity within the intersection area formed by the sight triangles
between the target and the anchors as in Figure 7. The method is based on simple angular
geometric considerations but, while offering high accuracy, its effective integration into
the IoT environment is limited by the complexities arising from the need for specialized
hardware, such as antenna arrays and high signal-processing capabilities [74]. In addi-
tion, AoA typically requires an unobstructed Line Of Sight (LOS) and can be sensitive to
environmental conditions, potentially limiting its reliability in specific scenarios.
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Figure 7. AoA-based localization.

Despite this, there are several works in the literature that work on this promising
approach. In [75], the authors introduced a new two-step iterative algorithm for AoA
estimation and subsequent refinement through multilateration. The algorithm was tested
in a network using BLE and demonstrated excellent results compared to standard ap-
proaches. Similarly, [76] focused on BLE technology, presenting an approach based on
CNN to address challenges such as noise, multipath effects, and path loss. To address the
same interference-related challenges, ref. [77] presented a confidence-aware AoA-based
localization system. The proposed work addresses the problem of variable reliability in
AoA estimation, which affects the performance of Wi-Fi-based localization, using mathe-
matical approaches and decision weighting based on measurement confidence. Exploring
the promising Ultra-WideBand (UWB) technology in this field, ref. [78] presented AnguLoc,
an efficient system designed to overcome duplex ambiguity and unknown skew, with
the aim to improve accuracy and reduce packet exchange. Similarly, in [79], the authors
addressed the challenges of the AoA method by proposing a framework for 5G and IoT
networks. This framework integrates NLS curve fitting, and Kalman and Gaussian fil-
tering to effectively mitigate these interferences. The work in [80] shifted the focus from
the previously discussed problems. The authors specifically addressed the complexity of
integrating this approach into small IoT devices, emphasizing the limitations of current
miniaturization strategies. They proposed an innovative solution based on Multiple-Input
and Multiple-Output (MIMO) antennas, making this approach more accessible for IoT.

3.3. Hybrid Solutions

IoT localization based on hybrid approaches is attracting increasing interest in the
literature due to its promising capabilities. Through the skillful combination of different
techniques, such as the combination of proximity and multilateration-based approaches,
and the integration of data from various technologies such as Wi-Fi and Bluetooth, these
approaches improve the accuracy, adaptability, and resilience of location systems.

Joint Techniques—Focusing on combining different techniques, a new algorithm in-
tegrating Round-Trip Time (RTT) and Wi-Fi RSS measurements was presented in [81],
achieving improvements in the accuracy and scalability of the localization system. A hy-
brid RSS method was also explored in [82], where it was combined with AoA measurements
to obtain a 3D localization scheme with high accuracy and robustness, addressing prob-
lems related to nonconvexity and computational complexity. Similarly, the combination of
RSS and AoA was exploited in [83], presenting an algorithm designed to be effective and
scalable, especially in harsh outdoor IoT environments. Focusing on critical parameters
typical of these localization systems, the authors of [84] integrated two similar techniques,
ToF and TDoA, aiming to combine the accuracy advantages of the former with the energy
efficiency of the latter. Following a similar logic, the work [85] proposed a methodology that
integrates TDoA and PDoA with PSO, achieving significant improvements in localization
performance over conventional methods that rely solely on TDoA.

Data Fusion—Shifting the focus to hybrid algorithms that combine different trans-
mission technologies, a recurring trend emerges: the prevalent adoption of Wi-Fi. This
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technology, due to its widespread integration in most IoT infrastructures, arises as a com-
mon element in all significant works in this category. In [86], it was shown how the
integration of a Wi-Fi architecture, characterized by shaded regions, with BLE beacons
leads to improved indoor location accuracy through data fusion. Similarly, in [87], an
LS-based localization algorithm combining Wi-Fi and Bluetooth was introduced, showing
the ability of the dual technology to produce more accurate results and a resilient system. In
addition, the authors offered an open-source Wi-Fi/Bluetooth dataset, a valuable resource
for researchers in the field. To exploit the advantages of the respective technologies, the
approaches presented in [88,89] introduced a hybrid strategy that blends a Wi-Fi infrastruc-
ture with a strategic deployment of UWB beacons. In both papers, the authors showed how
this combination achieves very accurate estimates, effectively overcoming the individual
limitations of each technology. Concluding, the study outlined in [90] introduced a hybrid
positioning system tailored for diverse seamless location applications, integrating Wi-Fi,
Bluetooth, ZigBee, and UWB protocols. Tested in a typical operational environment, the
system showcases superior performance across all aspects.

3.4. Comparative Analysis of Techniques

The IoT localization literature encompasses a wide range of methodologies, as outlined
in this review and summarized in Table 3. Each approach presents a unique set of strengths
and limitations, requiring a judicious selection based on the specific use case and its
requirements. The suitability of each technique depends on several metrics, most notably
accuracy, implementation cost and computational complexity intricately linked to energy
consumption, as well as coverage and scalability.

One of the most widely used methods in practical applications is fingerprint localiza-
tion. This technique exhibits commendable performance across multiple metrics, including
accuracy, complexity, and consequently energy consumption, as well as coverage and scal-
ability [91]. These characteristics make this technique particularly suitable for complex
environments, such as Smart Cities [92] and Industrial IoT (IIoT)-related scenarios [93].
However, it is critical to recognize that the implementation costs associated with this method
can be significant, especially as coverage requirements increase [91]. Belonging to the same
category, connectivity information-based methods also show similar characteristics in terms
of implementation costs, complexity, and consequently energy consumption, as well as coverage
and scalability [94]. However, they exhibit lower accuracy compared to both fingerprint- and
distance-based localization approaches, making them unsuitable for application scenarios
with stringent accuracy requirements [95].

Moving on to the range-based category, localization using proximity stands out as the
simplest one, offering advantages such as cost-effectiveness, low computational complexity and
energy efficiency, albeit at the expense of lower accuracy [96]. Common applications include
those with simple functionality, such as ensuring safety in simple environments [97] or
implementing Smart Housing solutions [98]. These applications typically require determin-
ing the proximity of the target to specific areas within a given environment, rather than
precise localization.

All other range-based approaches reviewed in this survey, such as RSS, AoA, ToA, etc.,
offer high levels of accuracy, coverage, and scalability [21]. However, they have the disadvan-
tage of high implementation costs, computational complexity, and energy consumption [99]. The
application of these localization techniques mirrors that of fingerprint-based technology,
but achieves superior results in dynamic scenarios, demonstrating increased adaptability
and effectiveness.
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Table 3. Summary of work categorized by the IoT localization technique.

Topic Year Reference Type of Work

Proximity
2018 [47,49]

Experimental
2020 [48,50]

RSS

2018 [52]

2019
[55]

[56]
Simulation/Experimental

2022
[53]

[57] Simulation

2023 [54] Experimental

AoA

2019
[75] Simulation/Experimental

[77] Experimental

2020 [78,79] Simulation/Experimental

2021 [76] Experimental

2022 [80] Simulation

ToA/ToF
2019 [58,60] Simulation/Experimental

2021 [59] Experimental

TDoA

2019 [62] Simulation/Experimental

2020
[67] Simulation

[68] Simulation/Experimental

2021
[63] Simulation

[65] Simulation/Experimental

2022 [64] Experimental

2023 [66] Simulation/Experimental

PDoA

2019 [70]
Experimental

2020 [73]

2021 [71] Simulation

2022 [72] Simulation/Experimental

Fingerprinting

2019 [34] Experimental

2020
[37] Simulation/Experimental

[38]
Experimental

2022 [35,36,39]

Connectivity Information

2019 [41,42]

Simulation
2020 [45]

2021 [43]

2023 [44]
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Table 3. Cont.

Topic Year Reference Type of Work

Joint Techniques

2019
[81] Experimental

[82,84]
Simulation

2020 [85]

2021 [83]

Experimental
Data Fusion

2019 [86,88]

2020 [90]

2022 [89]

2023 [87]

Finally, hybrid approaches, which are gaining interest in the research community, show
versatility and can be adapted to different domains depending on the specific requirements
of the application. These approaches skillfully highlight and address the inherent strengths
and weaknesses of the techniques and technologies used.

Table 4 summarizes the discussion in this section by listing the key performance
metrics for each technique analyzed in this study. Regarding the values of the performance
metrics in Table 4 (i.e., low/medium/high), the performed analysis is not in terms of
absolute values, but it is a comparison between approaches. As an illustrative example,
if complexity and energy consumption are considered metrics, connectivity information
techniques have medium performance and can be assumed as a benchmark. Therefore,
fingerprinting, which is labeled as low/medium, has similar but slightly lower complexity
and consumption. Multilateration techniques, instead, which are labeled as high, are
characterized by higher complexity and consumption with respect to techniques exploiting
connectivity information. Similar considerations hold for the other metrics. This supple-
ment provides valuable information about these technologies and helps determine the best
approach for specific applications and requirements.

Table 4. Comparison of localization techniques.

Technique Accuracy Implementation Cost Complexity and
Energy Consumption

Coverage and
Scalability

Fingerprinting Medium/High Medium/High Low/Medium High

Connectivity
Information Low Medium/High Medium High

Proximity Low Low Low Low/Medium

Multilateration-based Medium/High High High Medium/High

4. Threats Models, Detection and Mitigation

Numerous attacks represent a threat to IoT localization systems, operating at various
stages of the process. This review focuses on attacks that specifically affect the physical
layer of the architecture as outlined in Figure 1. These attacks, with different targets, can
lead to the disruption of location service (availability) or incorrect location due to tampering
actions (authenticity). This section examines the primary threat models for each localization
approach and presents the most promising solutions proposed in the literature to address
them. For summary purposes, Table 5 is provided at the conclusion of this section.
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4.1. Availability

The attacks against availability are orchestrated to disable the system from being able
to determine the position of the target. Denial-of-service (DoS) approaches belong to this
category, and the jamming attack is the one most frequently observed in the literature [100].
Jamming represents a form of DoS attack that obstructs the channel, preventing other nodes
from using it to communicate. Among the various localization techniques described in this
study, no one is immune to this particular type of attack [101].

Let us consider the RSS-based localization technique as an example. The target–anchor
distance estimation is based on the RSS measured from the target and involves calculations
based on the signal propagation model [102]. In the case of a jamming attack, the Signal-to-
Noise Ratio (SNR) of the receiver decreases significantly. Consequently, the target unaware
of the attack overestimates the distance from the anchors, potentially causing substantial
errors or, in the worst case, making position estimation no longer affordable.

Numerous papers in the literature focus on the challenge of jamming attacks in
the broad context of IoT and WSNs, offering various approaches to detect and mitigate
them [102–107]. Turning our attention to the more specific domain of IoT localization
systems, in [108], the authors introduce AS-DILOC, a consensus-based iterative distributed
algorithm featuring an abandonment strategy to mitigate packet loss in communication
links during DoS attacks. This ensures accurate sensor localization, regardless of the
attacker’s strategy.

4.2. Authenticity

The main security concern for IoT localization systems involves authenticity. Cyber-
security threats targeting this essential aspect focus on gaining control of one or more
anchors within the scenario or infiltrating the network by assuming a benevolent facade.
Once inside the system, attackers try to compromise the accurate distance estimation by
the compromised anchors. This is achieved by providing manipulated information, such
as tampered reference positions, or by manipulating transmission parameters, such as
transmission power [109].

Within this survey, we have classified attacks against authenticity into four primary
categories based on their execution methods: Spoofing, Sybil, Byzantine, and Wormhole attacks.

Spoofing—In a Spoofing attack, a malicious node adopts the identity of a benign anchor
node, typically duplicating its MAC address. This deceptive scheme allows the malicious
node to impact the localization process in a variety of ways. Several papers in the liter-
ature propose solutions for this type of attack. The paper [110] introduced SecureLoc, a
prototyping platform specifically designed to evaluate secure location methods in indoor
environments. The research includes an in-depth analysis and evaluation of Spoofing
attacks, illustrating the effectiveness of the platform in evaluating security measures. The
paper [111] addressed the problem of Spoofing in the context of fingerprint-based localiza-
tion. The authors presented BERT-ADLOC, a system designed to detect fake fingerprints
during database updates and defeat attacks during online inference. The scheme was tested
on a BLE fingerprint-based system, showing excellent localization performance against
adversaries in both phases.

Sybil—The Sybil attack, particularly prevalent in IoT location systems that rely on
connection information, is a highly destructive threat. The main goal of these attackers is to
create multiple false identities, thereby causing a misleading perception of numerous nodes
within the network, resulting in the devastation of the perceived topology [112]. Once
again, the scientific community has proposed several solutions to address the problem.
The authors in [113] addressed Sybil attacks that target connectivity-based localization
by introducing a secure version of DV–Hop. This adaptation enables the detection and
mitigation of these threats while preserving estimation accuracy even under attack. In the
paper [114], the authors introduced PrSLoc, a new algorithm designed to improve robust-
ness against Sybil attacks in RSS-based localization systems. The algorithm achieves this by
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incorporating Approximate Point-In-Triangulation and Differential Privacy mechanisms to
safeguard the identity of nodes.

Byzantine—A Byzantine attack is characterized by the intrusion of an attacker taking
control of one or more nodes within the network to disrupt the proper functioning of
the localization process. These malicious nodes engage in activities such as providing
false information or tampering with the transmission parameters, thus compromising the
accuracy of position estimates [115]. There are many promising solutions in the literature
to counter this highly aggressive form of attack. The article [116] proposed four techniques:
Weighted Least Square (WLS), secure WLS (SWLS), and L1-based techniques, namely
LN-1 and LN-1E. Demonstrating significant advantages in uncoordinated attacks, WLS
and SWLS detect and mitigate malicious nodes, while LN-1E prevents disruptions in
coordinated attacks by treating the location problem as a plan adaptation problem. A
WLS-based algorithm was proposed also in [117], showing to be particularly effective in
countering the impact of attackers who manipulate the transmission power of anchors.
In the work [118], these threats were formulated as an intractable maximum a posteriori
problem, considering a practical model of attack and uncertainties. The proposed algorithm
iteratively approximates the true posterior distribution, providing closed-form estimates
of position and velocity while identifying malicious nodes. The paper [119] introduced a
robust two-step feature selector, employing an AP trust model and Manifold Learning to
ensure resilience against Byzantine attacks.

Wormhole—In a Wormhole attack, the adversary strategically places two malicious
nodes in the network, establishing a dedicated low-latency channel between them. This
channel facilitates deceptive communication, causing nodes within range of one malicious
node to inaccurately perceive the proximity of the other node as well, as if they were only
one hop away [120]. In DV–Hop-based localization, this attack causes significant damage,
leading the scientific community in this area to analyze and propose mitigation solutions.
In [121], a new secure DV–Hop algorithm was introduced. By delegating data message
transmission to neighbor nodes and using a trust-based strategy, the algorithm significantly
improves attack detection rates, reduces localization errors, and minimizes energy costs
as evidenced by experimental results. Through the integration of centralized localization,
the identification of malicious nodes employing a Single-Class Support Vector Machine,
and localization recovery, the authors of [122] introduced a Secure Optimized Localization
algorithm adept at countering Wormhole attacks. The authors in [123] enhanced resilience
against Wormhole attacks by introducing an algorithm founded on the principles of Farkas’
lemma. This approach enables the identification and mitigation of Wormhole with higher
accuracy compared to several existing methods in the literature.

Generalized Solutions—There are also some works in the literature that present solutions
aimed at solving multiple types of attacks among those mentioned above. For instance,
in [124], a secure localization algorithm leveraging blockchain was outlined. This algo-
rithm aims to safeguard the precision of declared anchor locations and the authenticity
of exchanged data, effectively mitigating the impact of diverse types of attacks. Similarly,
in [125], the authors presented a blockchain-based fingerprint localization scheme that
establishes a tamper-proof real-time database of electromagnetic fingerprints. Through sim-
ulations, they demonstrated the feasibility and robustness of the scheme against Spoofing
and Sybil attacks. Staying in the domain of fingerprint-based localization, the paper [126] in-
troduced SE-Loc. This technique, based on Semi-Supervised Learning, provides robustness
to various types of attacks through continuous learning of scenario characteristics. Similar
logic was also used in [127] to detect routing-type threats, such as Wormhole and Sybil,
using a hybrid ML approach optimized for distance, location, and data communication.
The same attacks were also discussed in [128], where innovative detection algorithms based
on the concept of the highest-rank common ancestor were introduced and validated.
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Table 5. Summary of works proposing solution-specific threats divided by category.

Threat Model Year Reference
Proposed Solutions in the Field of

Radio Range-Based Fingerprinting Connectivity Info.

DoS
2021 [108] X X X

2023 [126] X

Spoofing

2019
[110] X

[124] X X X

2021 [111] X

2023
[126] X

[125] X

Sybil

2019 [124] X X X

2020
[113] X

[128] X

2023

[114] X

[126] X

[127] X

[125] X

Byzantine

2019 [124] X X X

2021

[116] X

[118] X

[119] X X

[117] X

2023 [126] X

Wormhole

2019 [124] X X X

2020 [128] X

2022 [121] X

2023

[122] X

[123] X

[126] X

[127] X

5. Summary and Guidelines

In line with the objectives outlined in the introduction of the survey, this section offers
insights and personal conclusions on the current state of the literature. Key findings of the
manuscript are listed below and then discussed in detail:

• A substantial majority of articles employ radio range-based methods.
• There is growing interest in hybrid approaches that jointly exploit different techniques

and use the fusion of data from different technologies to improve localization performance.
• Radio range-based techniques typically adopt a dual approach involving both experi-

mental tests and simulations.
• Researchers are increasingly focused on security aspects. Works addressing these

issues address specific threats related to particular localization techniques.
• Range-based approaches are susceptible to Byzantine attacks, connectivity information-

based methods are vulnerable to Wormhole and Sybil attacks, and fingerprinting
encounters a variety of challenges.
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Going into detail and focusing on the literature related to IoT localization techniques,
significant insights emerge for researchers in this area. First, in quantitative terms, it is
evident that a substantial majority of the articles employ radio range-based methods compared to
radio range-free methods as shown in Table 3. This prevalence underscores the inherent
advantages associated with these techniques, including easier implementation, higher
accuracy, suitability, and adaptability to diverse and dynamic environments. One notable
trend emerging from this survey is the increasing prevalence of hybrid approaches. Researchers
are increasingly proposing solutions that join different techniques, such as combining radio
range-based algorithms with fingerprinting, and various technologies, such as leveraging
Wi-Fi and Bluetooth through data fusion. Analyzing this trend, we expect the literature on
hybrid methods to grow in the coming years. As this survey has shown, the combination
of different techniques and technologies promises significant improvements, not only
in terms of accuracy but also in terms of robustness. In particular, focusing on hybrid
approaches using data fusion, we believe that future research should focus on exploring the
use of multiple short-range technologies. These technologies could be used in combination
or as backups for each other to improve the robustness of the systems. Furthermore,
incorporating both short-range and long-range technologies can improve the scalability of
the systems and make them more flexible to different situations.

As part of the review, special attention was paid to a crucial aspect in the evaluation
of literature references: the methodology used to validate the works. The question was
whether the studies were based on real tests, simulations, or both at different stages
of development. The importance of this aspect lies in the significant influence that the
chosen methodology has on the reproducibility of the research results. By clarifying these
characteristics, we offer valuable support to researchers, helping them identify work that
may be valuable in the development of their proposals. The Venn diagram presented in
Figure 8 provides valuable insights into the methodologies employed in different papers,
offering significant statistical insights that outline key trends within the literature. From
a statistical point of view, a prevalent trend can be seen. The papers employing radio
range-based techniques predominantly adopt a dual approach involving both experimental tests
and simulations. This is a consequence of the typical development flow of radio-based
localization algorithms, which involves an initial simulation phase to validate the theoretical
framework before moving on to field experiments. These involve considerable time and
cost, as well as introducing practical challenges due to the use of IoT technologies such as
Wi-Fi, BLE, UWB, LoRa, and others, in harsh environments. For this reason, in the literature,
field experiments are limited to cases where there is a high level of confidence that the
algorithm works as expected. In contrast, in the domain of radio range-free localization
techniques, particularly those that rely on connectivity information, there is a clear bias
toward the use of network simulators. This bias is inherent in these techniques, which rely
on network data rather than physical measurements to estimate target location.

Experimental Simulations

Proximity

RSS

AoA

ToA/ToF

TDoA

PDoA

Fingerprinting

Connectivity
Information

HybridHybrid

Figure 8. Distribution of papers according to the methodologies used.
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Moving on to reviewing the literature related to threat models, detection, and solutions,
several interesting statistics can be extracted, and diverse conclusions can be drawn. First,
as illustrated in Table 5, given the number of papers in the recent literature, one can observe
an increasing sensitivity of researchers regarding security aspects. Furthermore, one can see
that the proposed solutions are typically specialized in addressing a specific type of attack for a
particular localization technique. By delving deeper into individual localization techniques,
our analysis provides valuable insights into the potential threats associated with each. This
information reported in our survey is particularly important for researchers who specialize
in a specific technique, as it enables them to be aware of potential risks and easily identify
solutions documented in the literature. The radar diagram shown in Figure 9 serves as a
comprehensive visual representation of the various threats associated with IoT location
techniques. Each vertex of the polygon corresponds to a specific threat, and the proximity
of the data points to these vertices designates the increased vulnerability attributed to
these attack methods according to the reviewed literature. Note that each vertex of the
inner polygons quantitatively represents a single work analyzed in the literature. From
this analysis, it can be concluded that radio range-based techniques exhibit heightened
susceptibility to Byzantine attacks, making them critically vulnerable to unauthorized access
and anchor control. Fingerprint-based techniques, as reported in the literature, face a
variety of challenges, underscoring the need for robust security measures that account for all
potential risks. Connectivity-based techniques, by their nature, are primarily vulnerable to
Wormhole and Sybil attacks. Consequently, an expanding body of literature is dedicated to
addressing and mitigating this specific vulnerability.

DoS

Spoofing

Sybil

Byzantine

Wormhole

Radio Range-based

Fingerprinting

Connectivity Information

Figure 9. Distribution of the impact of major attacks on localization techniques.

6. Conclusions and Future Directions

In this paper, we conducted a comprehensive study of localization techniques in the
IoT domain, with a focus on identifying and addressing their main vulnerabilities. Our
survey first presented the various types of localization methods found in the literature,
offering insights into the advantages, disadvantages, and typical methodologies associated
with each category. Unlike previous survey approaches, our work was intended to be a
comprehensive resource for researchers, combining the technical details of implementing
the various techniques with insights into potential security challenges and their solutions.
Accordingly, we examined threat models and corresponding identification and mitigation
strategies, filling a gap in the literature that traditionally separates the two.

The general lesson that emerged from our survey underscores the growing interest
of academia in LBS, which consequently extends to IoT localization. In the dynamic
IoT landscape, characterized by devices that require less and less human interaction, the
importance of context awareness emerges as a critical factor. As a result, the literature
proposes a high number of papers with increasingly accurate and robust localization
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techniques. This trend has been particularly pronounced in recent years, with more than
100% growth observed between 2020 and 2024 compared to the previous decade as shown
by statistics obtained using the methodology described in Section 2.1. As the interest in
a particular technology grows, researchers are faced with the challenge of ensuring the
security, reliability, and accuracy of the systems involved. As a consequence, the scientific
community is dedicated to providing a variety of solutions to the numerous attacks that
have occurred in recent years. These solutions range from integrating safeguards or
countermeasures into localization technologies to creating hybrid algorithms that increase
the system’s robustness. In conclusion, through this comprehensive investigation of IoT
localization, we have attempted to chart a course by highlighting the current progress,
potential challenges, and areas that require further investigation.

Looking ahead, as seen with the emergence of artificial intelligence and ML, other
promising technologies such as blockchain [129] and quantum computing [130] will further
improve the performance and robustness of IoT localization systems. These advances
promise not only to increase system performance but also to enable new LBS and applica-
tions previously thought to be infeasible.
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