Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = liquid-solid-porous media seepage coupling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2568 KiB  
Article
A Liquid-Solid Coupling Hemodynamic Model with Microcirculation Load
by Bai Li and Xiaoyang Li
Appl. Sci. 2016, 6(1), 28; https://doi.org/10.3390/app6010028 - 20 Jan 2016
Cited by 3 | Viewed by 4448
Abstract
From the aspect of human circulation system structure, a complete hemodynamic model requires consideration of the influence of microcirculation load effect. This paper selected the seepage in porous media as the simulant of microcirculation load. On the basis of a bi-directional liquid-solid coupling [...] Read more.
From the aspect of human circulation system structure, a complete hemodynamic model requires consideration of the influence of microcirculation load effect. This paper selected the seepage in porous media as the simulant of microcirculation load. On the basis of a bi-directional liquid-solid coupling tube model, we built a liquid-solid-porous media seepage coupling model. The simulation parameters accorded with the physiological reality. Inlet condition was set as transient single-pulse velocity, and outlet as free outlet. The pressure in the tube was kept at the state of dynamic stability in the range of 80–120 mmHg. The model was able to simulate the entire propagating process of pulse wave. The pulse wave velocity simulated was 6.25 m/s, which accorded with the physiological reality. The complex pressure wave shape produced by reflections of pressure wave was also observed. After the model changed the cardiac cycle length, the pressure change according with actual human physiology was simulated successfully. The model in this paper is well-developed and reliable. It demonstrates the importance of microcirculation load in hemodynamic model. Moreover the properties of the model provide a possibility for the simulation of dynamic adjustment process of human circulation system, which indicates a promising prospect in clinical application. Full article
(This article belongs to the Special Issue Dynamical Models of Biology and Medicine)
Show Figures

Figure 1

Back to TopTop