Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = liquid cooling garment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 6922 KB  
Article
Compact Liquid Cooling Garment with Integrated Vapor Compression Refrigeration for Extreme High-Temperature Environments
by Yuancheng Zhu, Yonghong He and Weiguo Xiong
Machines 2025, 13(8), 738; https://doi.org/10.3390/machines13080738 - 19 Aug 2025
Viewed by 204
Abstract
Extreme high-temperature environments pose challenges for human thermal comfort and safety. This study introduces a compact portable liquid cooling garment weighing 3.6 kg in total with an integrated 1.99 kg vapor compression refrigeration unit (172 mm × 80 mm × 130 mm). This [...] Read more.
Extreme high-temperature environments pose challenges for human thermal comfort and safety. This study introduces a compact portable liquid cooling garment weighing 3.6 kg in total with an integrated 1.99 kg vapor compression refrigeration unit (172 mm × 80 mm × 130 mm). This system innovatively integrates a patented evaporator-pump module and an optimized miniature rotary compressor, achieving a 151 W cooling capacity at 55 °C ambient temperature, surpassing existing portable systems in compactness and performance. Human trials with eight male participants at 35 °C (walking) and 40 °C (sitting) demonstrated that the liquid cooling garment system significantly improved thermal comfort. The mean thermal comfort vote decreased from 2.63 (uncomfortable) to 1.13 (slightly uncomfortable) while walking and from 3.88 (very uncomfortable) to 1.25 (slightly uncomfortable) while sitting. The mean skin temperature in the final stable state was reduced by 0.34 °C in walking trials and 1.09 °C in sitting trials, and heart rate decreased by up to 10.2 bpm in sedentary conditions. Comprehensive human trials under extreme heat further validate this system’s efficacy. This lightweight, efficient system offers a practical solution for personal thermal management in extreme high-temperature environments, with potential applications in industrial safety, military operations, and emergency response. Full article
(This article belongs to the Section Turbomachinery)
Show Figures

Figure 1

27 pages, 1091 KB  
Review
Advances in Thermoregulating Textiles: Materials, Mechanisms, and Applications
by Kuok Ho Daniel Tang
Textiles 2025, 5(2), 22; https://doi.org/10.3390/textiles5020022 - 11 Jun 2025
Viewed by 2171
Abstract
Advancements in thermoregulating textiles have been propelled by innovations in nanotechnology, composite materials, and smart fiber engineering. This article reviews recent scholarly papers on experimental passive and active thermoregulating textiles to present the latest advancements in these fabrics, their mechanisms of thermoregulation, and [...] Read more.
Advancements in thermoregulating textiles have been propelled by innovations in nanotechnology, composite materials, and smart fiber engineering. This article reviews recent scholarly papers on experimental passive and active thermoregulating textiles to present the latest advancements in these fabrics, their mechanisms of thermoregulation, and their feasibility for use. The review underscores that phase-change materials enhanced with graphene, boron nitride, and carbon nanofibers offer superior thermal conductivity, phase stability, and flexibility, making them ideal for wearable applications. Shape-stabilized phase-change materials and aerogel-infused fibers have shown promising results in outdoor, industrial, and emergency settings due to their durability and high insulation efficiency. Radiative cooling textiles, engineered with hierarchical nanostructures and Janus wettability, demonstrate passive temperature regulation through selective solar reflection and infrared emission, achieving substantial cooling effects without external energy input. Thermo-responsive, shape-memory materials, and moisture-sensitive polymers enable dynamic insulation and actuation. Liquid-cooling garments and thermoelectric hybrids deliver precise temperature control but face challenges in portability and power consumption. While thermoregulating textiles show promise, the main challenges include achieving scalable manufacturing, ensuring material flexibility, and integrating multiple functions without sacrificing comfort. Future research should focus on hybrid systems combining passive and active mechanisms, user-centric wearability studies, and cost-effective fabrication methods. These innovations hold significant potential for applications in extreme environments, athletic wear, military uniforms, and smart clothing, contributing to energy efficiency, health, and comfort in a warming climate. Full article
Show Figures

Figure 1

15 pages, 3522 KB  
Review
Quantitative Comparison of Personal Cooling Garments in Performance and Design: A Review
by Yiying Zhou, Lun Lou and Jintu Fan
Processes 2023, 11(10), 2976; https://doi.org/10.3390/pr11102976 - 14 Oct 2023
Cited by 9 | Viewed by 4479
Abstract
Personal cooling garments (PCGs) have gained increasing attention as a promising solution to alleviate heat stress and enhance thermal comfort in hot and humid conditions. However, limited attention has been paid to the influence of clothing design on cooling performance. This review highlights [...] Read more.
Personal cooling garments (PCGs) have gained increasing attention as a promising solution to alleviate heat stress and enhance thermal comfort in hot and humid conditions. However, limited attention has been paid to the influence of clothing design on cooling performance. This review highlights the influence of design factors and provides a quantitative comparison in cooling performance for different types of PCGs, including air cooling garments, evaporative cooling garments, phase-change cooling garments, and liquid cooling garments. A detailed discussion about the relationship between design factors and the cooling performance of each cooling technique is provided based on the available literature. Furthermore, potential improvements and challenges in PCG design are explored. This review aims to offer a comprehensive insight into the attributes of various PCGs and promote interdisciplinary collaboration for improving PCGs in both cooling efficiency and garment comfort, which is valuable for further research and innovation. Full article
(This article belongs to the Special Issue Smart Wearable Technology: Thermal Management and Energy Applications)
Show Figures

Figure 1

18 pages, 9101 KB  
Article
Design of Liquid–Air Hybrid Cooling Garment and Its Effect on Local Thermal Comfort
by Wanwan Wang and Mengmeng Zhao
Appl. Sci. 2023, 13(16), 9414; https://doi.org/10.3390/app13169414 - 19 Aug 2023
Cited by 5 | Viewed by 2211
Abstract
Personal cooling garments were reported effective in improving thermal comfort in hot environments. In this study, three liquid–air hybrid cooling garments and one control garment were designed and made: aluminum-tube fan cooling (AAL), silicone-tube fan cooling (SAL), silicone-tube fan cooling with inner yarn [...] Read more.
Personal cooling garments were reported effective in improving thermal comfort in hot environments. In this study, three liquid–air hybrid cooling garments and one control garment were designed and made: aluminum-tube fan cooling (AAL), silicone-tube fan cooling (SAL), silicone-tube fan cooling with inner yarn fabric (YAL), and a control garment (CON) without the cooling sources. Subject trials were performed by eight female subjects in a climate chamber to simulate a summer indoor working environment at 32 °C and 50% relative humidity. The results showed that the liquid–air hybrid cooling garment provided effective convective and conductive heat dissipation compared with the no-cooling (CON) stat, chest, belly, shoulder, back, hand, thigh, and calf. The horizontal e, resulting in a decrease in local body skin temperature. Compared with the CON, the liquid–air cooling garment resulted in a maximum reduction of 1 °C for the mean torso skin temperature and 1.5 °C for the localized shoulder skin temperature. The AAL had a better cooling effect on the torso skin temperature compared with the SAL, and the cooling of the AAL was 0.5 °C lower than that of the SAL for the shoulder skin temperature. The presented liquid–air hybrid cooling garments were effective in cooling the body and improving thermal comfort. They were portable, accessible, and sustainable in hot indoor environments compared with air conditioners. Therefore, they could save energy. Full article
(This article belongs to the Special Issue Advanced Sensors for Postural or Gait Stability Assessment)
Show Figures

Figure 1

13 pages, 2425 KB  
Review
Personal Cooling Garments: A Review
by Song Ren, Mengyao Han and Jian Fang
Polymers 2022, 14(24), 5522; https://doi.org/10.3390/polym14245522 - 16 Dec 2022
Cited by 22 | Viewed by 10329
Abstract
Thermal comfort is of critical importance to people during hot weather or harsh working conditions to reduce heat stress. Therefore, personal cooling garments (PCGs) is a promising technology that provides a sustainable solution to provide direct thermal regulation on the human body, while [...] Read more.
Thermal comfort is of critical importance to people during hot weather or harsh working conditions to reduce heat stress. Therefore, personal cooling garments (PCGs) is a promising technology that provides a sustainable solution to provide direct thermal regulation on the human body, while at the same time, effectively reduces energy consumption on whole-building cooling. This paper summarizes the current status of PCGs, and depending on the requirement of electric power supply, we divide the PCGs into two categories with systematic instruction on the cooling materials, working principles, and state-of-the-art research progress. Additionally, the application fields of different cooling strategies are presented. Current problems hindering the improvement of PCGs, and further development recommendations are highlighted, in the hope of fostering and widening the prospect of PCGs. Full article
(This article belongs to the Special Issue Smart Textile and Polymer Materials)
Show Figures

Figure 1

Back to TopTop