Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = linear switched reluctance actuators

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2261 KiB  
Communication
Technological Challenges for a 60 m Long Prototype of Switched Reluctance Linear Electromagnetic Actuator
by Jakub Rygał, Roman Rygał and Stan Zurek
Actuators 2025, 14(8), 380; https://doi.org/10.3390/act14080380 - 1 Aug 2025
Viewed by 410
Abstract
In this research project a large linear electromagnetic actuator (LLEA) was designed and manufactured. The electromagnetic performance was published in previous works, but in this paper we focus on the technological challenges related to the manufacturing in particular. This LLEA was based on [...] Read more.
In this research project a large linear electromagnetic actuator (LLEA) was designed and manufactured. The electromagnetic performance was published in previous works, but in this paper we focus on the technological challenges related to the manufacturing in particular. This LLEA was based on the magnet-free switched-reluctance principle, having six effective energised stator “teeth” and four passive mover parts (4:6 ratio). Various aspects and challenges encountered during the manufacturing, transport, and assembly are discussed. Thermal expansion of steel contributed to the decision of the modular design, with each module having 1.3 m in length, with a 2 mm longitudinal dilatation gap. The initial prototype was tested with a 10.6 m length, with plans to extend the test track to 60 m, which was fully achievable due to the modular design and required 29 tons of electrical steel to be built. The stator laminations were cut by a bespoke progressive tool with stamping, and other parts by a CO2 laser. Mounting was based on welding (back of the stator) and clamping plates (through insulated bolts). The linear longitudinal force was on the order of 8 kN, with the main air gap of 7.5–10 mm on either side of the mover. The lateral forces could exceed 40 kN and were supported by appropriate construction steel members bolted to the concrete floor. The overall mechanical tolerances after installation remained below 0.5 mm. The technology used for constructing this prototype demonstrated the cost-effective way for a semi-industrial manufacturing scale. Full article
(This article belongs to the Section High Torque/Power Density Actuators)
Show Figures

Figure 1

16 pages, 9108 KiB  
Article
Two-Phase Linear Hybrid Reluctance Actuator with Low Detent Force
by Jordi Garcia-Amorós, Marc Marín-Genescà, Pere Andrada and Eusebi Martínez-Piera
Energies 2020, 13(19), 5162; https://doi.org/10.3390/en13195162 - 3 Oct 2020
Cited by 2 | Viewed by 2591
Abstract
In this paper, a novel two-phase linear hybrid reluctance actuator with the double-sided segmented stator, made of laminated U cores, and an interior mover with permanent magnets is proposed. The permanent magnets are disposed of in a way that increases the thrust force [...] Read more.
In this paper, a novel two-phase linear hybrid reluctance actuator with the double-sided segmented stator, made of laminated U cores, and an interior mover with permanent magnets is proposed. The permanent magnets are disposed of in a way that increases the thrust force of a double-sided linear switched reluctance actuator of the same size. To achieve this objective, each phase of the actuator is powered by a single H-bridge inverter. To reduce the detent force, the upper and the lower stator were shifted. Finite element analysis was used to demonstrate that the proposed actuator has a high force density with low detent force. In addition, a comparative study between the proposed linear hybrid reluctance actuator, linear switched reluctance, and linear permanent magnet actuators of the same size was performed. Finally, experimental tests carried out in a prototype confirmed the goals of the proposed actuator. Full article
(This article belongs to the Special Issue Magnetic Material Modelling of Electrical Machines)
Show Figures

Graphical abstract

18 pages, 617 KiB  
Article
Analysis and Modeling of Linear-Switched Reluctance for Medical Application
by Jean-Francois Llibre, Nicolas Martinez, Pascal Leprince and Bertrand Nogarede
Actuators 2013, 2(2), 27-44; https://doi.org/10.3390/act2020027 - 22 Apr 2013
Cited by 15 | Viewed by 11048
Abstract
This paper focuses on the analysis, the modeling and the control of a linear-switched reluctance motor. The application under consideration is medical, and the actuator is to be used as a left ventricular assist device. The actuator has a cylindrical or tubular shape, [...] Read more.
This paper focuses on the analysis, the modeling and the control of a linear-switched reluctance motor. The application under consideration is medical, and the actuator is to be used as a left ventricular assist device. The actuator has a cylindrical or tubular shape, with a mechanical unidirectional valve placed inside the mover, which provides a pulsatile flow of blood. The analytical expression of the effort based on the linear behavior of the actuator is given. The identification of the characteristics of the prototype actuator and the principle of position control is performed. A modeling of the actuator is proposed, taking into account the variation of inductance with respect to the position. The closed-loop position control of the actuator is performed by simulation. A controller with integral action and anticipatory action is implemented in order to compensate the effects of disturbing efforts and tracking deviations. Moreover, a magic switch is performed in the controller to avoid overshoots. The results show that the closed-loop response of the actuator is satisfactory. Full article
(This article belongs to the Special Issue Human Centered Actuators)
Show Figures

Figure 1

20 pages, 1111 KiB  
Article
An Intelligent Sensor Array Distributed System for Vibration Analysis and Acoustic Noise Characterization of a Linear Switched Reluctance Actuator
by José Salvado, António Espírito-Santo and Maria Calado
Sensors 2012, 12(6), 7614-7633; https://doi.org/10.3390/s120607614 - 7 Jun 2012
Cited by 6 | Viewed by 8492
Abstract
This paper proposes a distributed system for analysis and monitoring (DSAM) of vibrations and acoustic noise, which consists of an array of intelligent modules, sensor modules, communication bus and a host PC acting as data center. The main advantages of the DSAM are [...] Read more.
This paper proposes a distributed system for analysis and monitoring (DSAM) of vibrations and acoustic noise, which consists of an array of intelligent modules, sensor modules, communication bus and a host PC acting as data center. The main advantages of the DSAM are its modularity, scalability, and flexibility for use of different type of sensors/transducers, with analog or digital outputs, and for signals of different nature. Its final cost is also significantly lower than other available commercial solutions. The system is reconfigurable, can operate either with synchronous or asynchronous modes, with programmable sampling frequencies, 8-bit or 12-bit resolution and a memory buffer of 15 kbyte. It allows real-time data-acquisition for signals of different nature, in applications that require a large number of sensors, thus it is suited for monitoring of vibrations in Linear Switched Reluctance Actuators (LSRAs). The acquired data allows the full characterization of the LSRA in terms of its response to vibrations of structural origins, and the vibrations and acoustic noise emitted under normal operation. The DSAM can also be used for electrical machine condition monitoring, machine fault diagnosis, structural characterization and monitoring, among other applications. Full article
(This article belongs to the Special Issue State-of-the-Art Sensors Technology in Portugal)
Show Figures

Graphical abstract

8 pages, 533 KiB  
Article
Application of Linear Switched Reluctance Motor for Active Suspension System in Electric Vehicle
by Zhu Zhang, Norbert C. Cheung and K. W. E. Cheng
World Electr. Veh. J. 2010, 4(1), 14-21; https://doi.org/10.3390/wevj4010014 - 26 Mar 2010
Cited by 6 | Viewed by 1334
Abstract
Electromagnetic active suspension system is considered to have improved stability and better dynamic response, compared to the hydraulic active suspension system. To investigate the influence of suspension parameters on system characteristics, the frequency response of quarter vehicle model is analyzed through Bode plots [...] Read more.
Electromagnetic active suspension system is considered to have improved stability and better dynamic response, compared to the hydraulic active suspension system. To investigate the influence of suspension parameters on system characteristics, the frequency response of quarter vehicle model is analyzed through Bode plots by varying the spring stiffness and damping coefficient. The sprung mass acceleration, suspension deflection and tire deflection are investigated respectively. This paper proposes a novel electromagnetic suspension system, comprising of a linear switched reluctance motor (LSRM) and a passive spring. The mechanical and electrical characteristics of the proposed linear motor are obtained and verified by using two-dimensional finite element method (FEM). The magnetic flux densities at specific translator positions are demonstrated. In order to study the feasibility and evaluate the performance of the proposed suspension system, a LQR optimal controller is developed and simulated with the quarter-vehicle model. The sprung mass acceleration, suspension deflection and related force applied by the actuator are investigated under different road disturbance. Both frequencies of disturbance are approximate to the suspension natural frequencies, which are the most severe working point of active suspension system. Simulation results demonstrate that good dynamic response and better ride comfort can be achieved by the proposed active suspension system. Full article
Back to TopTop