Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = light diffraction spectroscopy (LDS)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2485 KiB  
Article
Amorphous Calcium Phosphate Formation and Aggregation Process Revealed by Light Scattering Techniques
by Vida Čadež, Ina Erceg, Atiđa Selmani, Darija Domazet Jurašin, Suzana Šegota, Daniel M. Lyons, Damir Kralj and Maja Dutour Sikirić
Crystals 2018, 8(6), 254; https://doi.org/10.3390/cryst8060254 - 17 Jun 2018
Cited by 30 | Viewed by 7997
Abstract
Amorphous calcium phosphate (ACP) attracts attention as a precursor of crystalline calcium phosphates (CaPs) formation in vitro and in vivo as well as due to its excellent biological properties. Its formation can be considered to be an aggregation process. Although aggregation of ACP [...] Read more.
Amorphous calcium phosphate (ACP) attracts attention as a precursor of crystalline calcium phosphates (CaPs) formation in vitro and in vivo as well as due to its excellent biological properties. Its formation can be considered to be an aggregation process. Although aggregation of ACP is of interest for both gaining a fundamental understanding of biominerals formation and in the synthesis of novel materials, it has still not been investigated in detail. In this work, the ACP aggregation was followed by two widely applied techniques suitable for following nanoparticles aggregation in general: dynamic light scattering (DLS) and laser diffraction (LD). In addition, the ACP formation was followed by potentiometric measurements and formed precipitates were characterized by Fourier transform infrared spectroscopy (FTIR), powder X-ray diffraction (PXRD), transmission electron microscopy (TEM), and atomic force microscopy (AFM). The results showed that aggregation of ACP particles is a process which from the earliest stages simultaneously takes place at wide length scales, from nanometers to micrometers, leading to a highly polydisperse precipitation system, with polydispersity and vol. % of larger aggregates increasing with concentration. Obtained results provide insight into developing a way of regulating ACP and consequently CaP formation by controlling aggregation on the scale of interest. Full article
(This article belongs to the Special Issue Biomimetic Growth of Calcium Phosphate Crystals)
Show Figures

Graphical abstract

13 pages, 334 KiB  
Article
Using Light Scattering to Screen Polyelectrolytes (PEL) Performance in Flocculation
by Maria G. Rasteiro, Ineide Pinheiro, Fernando A. P. Garcia, Paulo Ferreira and David Hunkeler
Polymers 2011, 3(2), 915-927; https://doi.org/10.3390/polym3020915 - 27 May 2011
Cited by 20 | Viewed by 8531
Abstract
Flocculation of precipitated calcium carbonate (PCC) was monitored using light diffraction spectroscopy (LDS). Four cationic polyacrylamides of high molar mass and with different degrees of branching, all copolymers of acrylamide (AM) and acryloyloxyethyltrimethyl ammonium chloride (Q9), were tested. LDS supplied information about the [...] Read more.
Flocculation of precipitated calcium carbonate (PCC) was monitored using light diffraction spectroscopy (LDS). Four cationic polyacrylamides of high molar mass and with different degrees of branching, all copolymers of acrylamide (AM) and acryloyloxyethyltrimethyl ammonium chloride (Q9), were tested. LDS supplied information about the kinetic curves for flocs growth and also for the flocs structure evolution. Flocculation kinetics, flocs size and structure, flocs resistance and reflocculation capacity could be correlated with the degree of branching of the polyelectrolytes (PEL). Furthermore, PEL with different degrees of branching corresponded to different values for the intrinsic viscosity, indicating differences in the polymer conformation, which explained well the performance differences in flocculation. Full article
(This article belongs to the Special Issue Polyelectrolytes)
Show Figures

Graphical abstract

Back to TopTop