Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = lichen dehydration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1607 KB  
Article
Characterization and Expression Analysis of the Sterol C-5 Desaturase Gene PcERG3 in the Mycobiont of the Lichen Peltigera canina Under Abiotic Stresses
by Moatasem A. Swid, Milana V. Koulintchenko, Alfred O. Onele, Ilya Y. Leksin, Daniya F. Rakhmatullina, Ekaterina I. Galeeva, Julia N. Valitova, Farida V. Minibayeva and Richard P. Beckett
Microbiol. Res. 2025, 16(7), 139; https://doi.org/10.3390/microbiolres16070139 - 1 Jul 2025
Viewed by 768
Abstract
Lichens, symbiotic organisms with a high tolerance to harsh environments, possess a greater diversity of sterols than other organisms. Sterols are involved in maintaining membrane integrity, hormone biosynthesis, and signal transduction. (1) Background: A characteristic feature of lichen sterols is a high degree [...] Read more.
Lichens, symbiotic organisms with a high tolerance to harsh environments, possess a greater diversity of sterols than other organisms. Sterols are involved in maintaining membrane integrity, hormone biosynthesis, and signal transduction. (1) Background: A characteristic feature of lichen sterols is a high degree of unsaturation, which influences membrane properties. Desaturases play an important role in the synthesis of unsaturated sterols, in particular, sterol C-5 desaturase (ERG3), which controls the conversion of episterol to ergosterol. Earlier, we demonstrated that the treatment of the lichen Peltigera canina with low and elevated temperatures results in changes in the levels of episterol and ergosterol. (2) Methods: Here, for the first time, we identified ERG3 in P. canina and, using an in silico analysis, we showed that PcERG3 belongs to the superfamily of fatty acid hydrolyases. A phylogenetic analysis was conducted to determine the evolutionary relationships of PcERG3. (3) Results: A phylogenetic analysis showed that PcERG3 clusters with ERG3 from other Peltigeralian and non-Peltigeralian lichens and also with ERG3 from free-living fungi. This suggests that PcERG3 has an ancient evolutionary origin and is related to fungi with lichenized ancestors, e.g., Penicillium. The differential expression of PcERG3 in response to temperature stress, a dehydration/rehydration cycle, and heavy metal exposure suggests that it plays a crucial role in maintaining the balance between more and less saturated sterols and, more generally, in membrane functioning. The multifaceted response of P. canina to abiotic stresses was documented by simultaneously measuring changes in the expression of PcERG3, as well as the genes encoding the heat shock proteins, PcHSP20 and PcHSP98, and PcSOD1, which encodes the antioxidant enzyme superoxide dismutase. (4) Conclusions: These findings suggest that PcERG3 is similar to the sterol C-5 desaturases from related and free-living fungi and plays important roles in the molecular mechanisms underlying the tolerance of lichens to environmental stress. Full article
Show Figures

Figure 1

14 pages, 14503 KB  
Article
The Key Role of Cyclic Electron Flow in the Recovery of Photosynthesis in the Photobiont during Rehydration of the Lichen Cladonia stellaris
by Shuzhi Wang, Wenfeng Li, Rehemanjiang Wufuer, Jia Duo, Liang Pei and Xiangliang Pan
Plants 2023, 12(23), 4011; https://doi.org/10.3390/plants12234011 - 29 Nov 2023
Cited by 2 | Viewed by 1692
Abstract
Lichens are poikilohydric organisms and an important part of the ecosystem. They show high desiccation tolerance, but the mechanism of dehydration resistance still needs to be studied. The photosynthesis recovery of the photobiont in rehydrated lichen Cladonia stellaris after 11-year desiccation was investigated by [...] Read more.
Lichens are poikilohydric organisms and an important part of the ecosystem. They show high desiccation tolerance, but the mechanism of dehydration resistance still needs to be studied. The photosynthesis recovery of the photobiont in rehydrated lichen Cladonia stellaris after 11-year desiccation was investigated by simultaneously monitoring both photosystem I and II (PSI and PSII) activities. The responses of the photochemical efficiency and relative electron transport rate (rETR) of PSI and PSII, and the quantum yield of the cyclic electron flow (CEF) were measured using a Dual-PAM-100 system. PSI recovered rapidly, but PSII hardly recovered in C. stellaris during rehydration. The maximal photochemical efficiency of PSII (Fv/Fm) was generally very low and reached about just 0.4 during the rehydration. These results indicated that PSII had restored little and was largely inactivated during rehydration. The quantum yield of PSI recovered quickly to almost 0.9 within 4 h and remained constant at nearly 1 thereafter. The results showed that the activation of the CEF in the early stages of rehydration helped the rapid recovery of PSI. The quantum yield of the CEF made up a considerable fraction of the quantum yield of PSI during rehydration. A regulated excess energy dissipation mechanism and non-photochemical quenching (NPQ) also recovered. However, the small extent of the recovery of the NPQ was not enough to dissipate the excess energy during rehydration, which may be responsible for the weak activity of PSII during rehydration. The results indicated that both CEF and NPQ were essential during the rehydration of the photobiont in C. stellaris. The methods used in the measurements of chlorophyll a fluorescence and P700+ absorbance changes in this study provided a speedy and simple way to detect the physiological characteristics of the photobionts of lichen during rehydration. This work improves our understanding of the mechanism behind lichen’s desiccation tolerance. Full article
(This article belongs to the Special Issue Across-All-Levels Photosynthesis in Polar and Alpine Lichens)
Show Figures

Figure 1

24 pages, 4050 KB  
Article
Near-Infrared Metabolomic Fingerprinting Study of Lichen Thalli and Phycobionts in Culture: Aquaphotomics of Trebouxia lynnae Dehydration
by Irene Bruñas Gómez, Monica Casale, Eva Barreno and Myriam Catalá
Microorganisms 2022, 10(12), 2444; https://doi.org/10.3390/microorganisms10122444 - 10 Dec 2022
Cited by 9 | Viewed by 3369
Abstract
Near-infrared spectroscopy (NIRS) is an accurate, fast and safe technique whose full potential remains to be exploited. Lichens are a paradigm of symbiotic association, with extraordinary properties, such as abiotic stress tolerance and adaptation to anhydrobiosis, but subjacent mechanisms await elucidation. Our aim [...] Read more.
Near-infrared spectroscopy (NIRS) is an accurate, fast and safe technique whose full potential remains to be exploited. Lichens are a paradigm of symbiotic association, with extraordinary properties, such as abiotic stress tolerance and adaptation to anhydrobiosis, but subjacent mechanisms await elucidation. Our aim is characterizing the metabolomic NIRS fingerprints of Ramalina farinacea and Lobarina scrobiculata thalli, and of the cultured phycobionts Trebouxia lynnae and Trebouxia jamesii. Thalli collected in an air-dry state and fresh cultivated phycobionts were directly used for spectra acquisition in reflectance mode. Thalli water peaks were associated to the solvation shell (1354 nm) and sugar–water interactions (1438 nm). While northern–southern orientation related with two hydrogen bonded (S2) water, the site was related to one hydrogen bonded (S1). Water, lipids (saturated and unsaturated), and polyols/glucides contributed to the profiles of lichen thalli and microalgae. R. farinacea, with higher desiccation tolerance, shows higher S2 water than L. scrobiculata. In contrast, fresh phycobionts are dominated by free water. Whereas T. jamesii shows higher solvation water content, T. lynnae possesses more unsaturated lipids. Aquaphotomics demonstrates the involvement of strongly hydrogen bonded water conformations, polyols/glucides, and unsaturated/saturated fatty acids in the dehydration process, and supports a “rubbery” state allowing enzymatic activity during anhydrobiosis. Full article
(This article belongs to the Special Issue Feature Collection in Environmental Microbiology Section 2021-2022)
Show Figures

Figure 1

21 pages, 6799 KB  
Article
Inhibition of Primary Photosynthesis in Desiccating Antarctic Lichens Differing in Their Photobionts, Thallus Morphology, and Spectral Properties
by Miloš Barták, Josef Hájek, Alla Orekhova, Johana Villagra, Catalina Marín, Götz Palfner and Angélica Casanova-Katny
Microorganisms 2021, 9(4), 818; https://doi.org/10.3390/microorganisms9040818 - 13 Apr 2021
Cited by 20 | Viewed by 3671
Abstract
Five macrolichens of different thallus morphology from Antarctica (King George Island) were used for this ecophysiological study. The effect of thallus desiccation on primary photosynthetic processes was examined. We investigated the lichens’ responses to the relative water content (RWC) in their thalli during [...] Read more.
Five macrolichens of different thallus morphology from Antarctica (King George Island) were used for this ecophysiological study. The effect of thallus desiccation on primary photosynthetic processes was examined. We investigated the lichens’ responses to the relative water content (RWC) in their thalli during the transition from a wet (RWC of 100%) to a dry state (RWC of 0%). The slow Kautsky kinetics of chlorophyll fluorescence (ChlF) that was recorded during controlled dehydration (RWC decreased from 100 to 0%) and supplemented with a quenching analysis revealed a polyphasic species-specific response of variable fluorescence. The changes in ChlF at a steady state (Fs), potential and effective quantum yields of photosystem II (FV/FM, ΦPSII), and nonphotochemical quenching (NPQ) reflected a desiccation-induced inhibition of the photosynthetic processes. The dehydration-dependent fall in FV/FM and ΦPSII was species-specific, starting at an RWC range of 22–32%. The critical RWC for ΦPSII was below 5%. The changes indicated the involvement of protective mechanisms in the chloroplastic apparatus of lichen photobionts at RWCs of below 20%. In both the wet and dry states, the spectral reflectance curves (SRC) (wavelength 400–800 nm) and indices (NDVI, PRI) of the studied lichen species were measured. Black Himantormia lugubris showed no difference in the SRCs between wet and dry state. Other lichens showed a higher reflectance in the dry state compared to the wet state. The lichen morphology and anatomy data, together with the ChlF and spectral reflectance data, are discussed in relation to its potential for ecophysiological studies in Antarctic lichens. Full article
(This article belongs to the Special Issue Lichen Functional Traits and Ecosystem Functions)
Show Figures

Figure 1

Back to TopTop