Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = lava levee

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 8922 KiB  
Article
SPH Simulation of Molten Metal Flow Modeling Lava Flow Phenomena with Solidification
by Shingo Tomita, Joe Yoshikawa, Makoto Sugimoto, Hisaya Komen and Masaya Shigeta
Dynamics 2024, 4(2), 287-302; https://doi.org/10.3390/dynamics4020017 - 19 Apr 2024
Viewed by 1760
Abstract
Characteristic dynamics in lava flows, such as the formation processes of lava levees, toe-like tips, and overlapped structures, were reproduced successfully through numerical simulation using the smoothed particle hydrodynamics (SPH) method. Since these specific phenomena have a great influence on the flow direction [...] Read more.
Characteristic dynamics in lava flows, such as the formation processes of lava levees, toe-like tips, and overlapped structures, were reproduced successfully through numerical simulation using the smoothed particle hydrodynamics (SPH) method. Since these specific phenomena have a great influence on the flow direction of lava flows, it is indispensable to elucidate them for accurate predictions of areas where lava strikes. At the first step of this study, lava was expressed using a molten metal with known physical properties. The computational results showed that levees and toe-like tips formed at the fringe of the molten metal flowing down on a slope, which appeared for actual lava flows as well. The dynamics of an overlapped structure formation were also simulated successfully; therein, molten metal flowed down, solidified, and changed the surface shape of the slope, and the second molten metal flowed over the changed surface shape. It was concluded that the computational model developed in this study using the SPH method is applicable for simulating and clarifying lava flow phenomena. Full article
(This article belongs to the Special Issue Recent Advances in Dynamic Phenomena—2nd Edition)
Show Figures

Figure 1

Back to TopTop