Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = laryngeal motor cortex

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1449 KB  
Review
Central Autonomic Mechanisms Involved in the Control of Laryngeal Activity and Vocalization
by Marta González-García, Laura Carrillo-Franco, Carmen Morales-Luque, Marc Stefan Dawid-Milner and Manuel Víctor López-González
Biology 2024, 13(2), 118; https://doi.org/10.3390/biology13020118 - 13 Feb 2024
Cited by 5 | Viewed by 5615
Abstract
In humans, speech is a complex process that requires the coordinated involvement of various components of the phonatory system, which are monitored by the central nervous system. The larynx in particular plays a crucial role, as it enables the vocal folds to meet [...] Read more.
In humans, speech is a complex process that requires the coordinated involvement of various components of the phonatory system, which are monitored by the central nervous system. The larynx in particular plays a crucial role, as it enables the vocal folds to meet and converts the exhaled air from our lungs into audible sounds. Voice production requires precise and sustained exhalation, which generates an air pressure/flow that creates the pressure in the glottis required for voice production. Voluntary vocal production begins in the laryngeal motor cortex (LMC), a structure found in all mammals, although the specific location in the cortex varies in humans. The LMC interfaces with various structures of the central autonomic network associated with cardiorespiratory regulation to allow the perfect coordination between breathing and vocalization. The main subcortical structure involved in this relationship is the mesencephalic periaqueductal grey matter (PAG). The PAG is the perfect link to the autonomic pontomedullary structures such as the parabrachial complex (PBc), the Kölliker–Fuse nucleus (KF), the nucleus tractus solitarius (NTS), and the nucleus retroambiguus (nRA), which modulate cardiovascular autonomic function activity in the vasomotor centers and respiratory activity at the level of the generators of the laryngeal-respiratory motor patterns that are essential for vocalization. These cores of autonomic structures are not only involved in the generation and modulation of cardiorespiratory responses to various stressors but also help to shape the cardiorespiratory motor patterns that are important for vocal production. Clinical studies show increased activity in the central circuits responsible for vocalization in certain speech disorders, such as spasmodic dysphonia because of laryngeal dystonia. Full article
(This article belongs to the Special Issue Cardiovascular Autonomic Function: From Bench to Bedside)
Show Figures

Figure 1

13 pages, 1309 KB  
Review
Exploring Neurophysiological Mechanisms and Treatment Efficacies in Laryngeal Dystonia: A Transcranial Magnetic Stimulation Approach
by Maja Rogić Vidaković, Joško Šoda, Joshua Elan Kuluva, Braco Bošković, Krešimir Dolić and Ivana Gunjača
Brain Sci. 2023, 13(11), 1591; https://doi.org/10.3390/brainsci13111591 - 15 Nov 2023
Cited by 2 | Viewed by 2957
Abstract
Laryngeal dystonia (LD), known or termed as spasmodic dysphonia, is a rare movement disorder with an unknown cause affecting the intrinsic laryngeal muscles. Neurophysiological studies point to perturbed inhibitory processes, while conventional genetic studies reveal fragments of genetic architecture in LD. The study’s [...] Read more.
Laryngeal dystonia (LD), known or termed as spasmodic dysphonia, is a rare movement disorder with an unknown cause affecting the intrinsic laryngeal muscles. Neurophysiological studies point to perturbed inhibitory processes, while conventional genetic studies reveal fragments of genetic architecture in LD. The study’s aims are to (1) describe transcranial magnetic stimulation (TMS) methodology for studying the functional integrity of the corticospinal tract by stimulating the primary motor cortex (M1) for laryngeal muscle representation and recording motor evoked potentials (MEPs) from laryngeal muscles; (2) evaluate the results of TMS studies investigating the cortical silent period (cSP) in LD; and (3) present the standard treatments of LD, as well as the results of new theoretical views and treatment approaches like repetitive TMS and laryngeal vibration over the laryngeal muscles as the recent research attempts in treatment of LD. Neurophysiological findings point to a shortened duration of cSP in adductor LD and altered cSP duration in abductor LD individuals. Future TMS studies could further investigate the role of cSP in relation to standard laryngological measures and treatment options. A better understanding of the neurophysiological mechanisms might give new perspectives for the treatment of LD. Full article
Show Figures

Figure 1

10 pages, 972 KB  
Article
The Cortical Silent Period in the Cricothyroid Muscle as a Neurophysiologic Feature for Dystonia Observation: E-Field-Navigated Transcranial Magnetic (TMS) Study
by Ivan Konstantinović, Braco Bošković, Joško Šoda, Krešimir Dolić, Zoran Đogaš, Mirko Lapčić, Vlatko Ledenko, Toni Vrgoč and Maja Rogić Vidaković
Biomedicines 2023, 11(5), 1373; https://doi.org/10.3390/biomedicines11051373 - 5 May 2023
Cited by 1 | Viewed by 2374
Abstract
The cortical silent period (cSP) is a period of electrical silence following a motor-evoked potential (MEP) in the electromyographic signal recorded from a muscle. The MEP can be elicited by transcranial magnetic stimulation (TMS) over the primary motor cortex site corresponding with the [...] Read more.
The cortical silent period (cSP) is a period of electrical silence following a motor-evoked potential (MEP) in the electromyographic signal recorded from a muscle. The MEP can be elicited by transcranial magnetic stimulation (TMS) over the primary motor cortex site corresponding with the muscle. The cSP reflects the intracortical inhibitory process mediated by GABAA and GABAB receptors. The study aimed to investigate the cSP in the cricothyroid (CT) muscle after applying e-field-navigated TMS over the laryngeal motor cortex (LMC) in healthy subjects. Then, a cSP as a neurophysiologic feature for laryngeal dystonia was observed. We applied a single-pulse e-field-navigated TMS to the LMC over both hemispheres with hook-wire electrodes positioned in the CT muscle in nineteen healthy participants, which triggered the elicitation of contralateral and ipsilateral corticobulbar MEPs. The subjects were engaged in a vocalization task, and then we assessed the following metrics: LMC intensity, peak-to-peak MEP amplitude in the CT muscle, and cSP duration. The results showed that the cSP duration from the contralateral CT muscle was distributed from 40 ms to 60.83 ms, and from the ipsilateral CT muscle, from 40 ms to 65.58 ms. Also, no significant difference was found between the contralateral and ipsilateral cSP duration (t(30) = 0.85, p = 0.40), MEP amplitude in the CT muscle (t(30) = 0.91, p = 0.36), and LMC intensity (t(30) = 1.20, p = 0.23). To conclude, the applied research protocol showed the feasibility of recording LMC corticobulbar MEPs and observing the cSP during vocalization in healthy participants. Furthermore, an understanding of neurophysiologic cSP features can be used to study the pathophysiology of neurological disorders that affect laryngeal muscles, such as laryngeal dystonia. Full article
(This article belongs to the Section Neurobiology and Clinical Neuroscience)
Show Figures

Figure 1

21 pages, 2790 KB  
Review
The Patho-Neurophysiological Basis and Treatment of Focal Laryngeal Dystonia: A Narrative Review and Two Case Reports Applying TMS over the Laryngeal Motor Cortex
by Maja Rogić Vidaković, Ivana Gunjača, Josipa Bukić, Vana Košta, Joško Šoda, Ivan Konstantinović, Braco Bošković, Irena Bilić and Nikolina Režić Mužinić
J. Clin. Med. 2022, 11(12), 3453; https://doi.org/10.3390/jcm11123453 - 15 Jun 2022
Cited by 2 | Viewed by 4118
Abstract
Focal laryngeal dystonia (LD) is a rare, idiopathic disease affecting the laryngeal musculature with an unknown cause and clinically presented as adductor LD or rarely as abductor LD. The most effective treatment options include the injection of botulinum toxin (BoNT) into the affected [...] Read more.
Focal laryngeal dystonia (LD) is a rare, idiopathic disease affecting the laryngeal musculature with an unknown cause and clinically presented as adductor LD or rarely as abductor LD. The most effective treatment options include the injection of botulinum toxin (BoNT) into the affected laryngeal muscle. The aim of this narrative review is to summarize the patho-neuro-physiological and genetic background of LD, as well as the standard recommended therapy (BoNT) and pharmacological treatment options, and to discuss possible treatment perspectives using neuro-modulation techniques such as repetitive transcranial magnetic stimulation (rTMS) and vibrotactile stimulation. The review will present two LD cases, patients with adductor and abductor LD, standard diagnostic procedure, treatments and achievement, and the results of cortical excitability mapping the primary motor cortex for the representation of the laryngeal muscles in the assessment of corticospinal and corticobulbar excitability. Full article
(This article belongs to the Special Issue Clinical Management of Movement Disorders)
Show Figures

Figure 1

Back to TopTop