Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = large-scale human airway

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4140 KiB  
Article
Compounding Achromobacter Phages for Therapeutic Applications
by Ana Georgina Cobián Güemes, Tram Le, Maria Isabel Rojas, Nicole E. Jacobson, Helena Villela, Katelyn McNair, Shr-Hau Hung, Lili Han, Lance Boling, Jessica Claire Octavio, Lorena Dominguez, Vito Adrian Cantú, Sinéad Archdeacon, Alejandro A. Vega, Michelle A. An, Hamza Hajama, Gregory Burkeen, Robert A. Edwards, Douglas J. Conrad, Forest Rohwer and Anca M. Segalladd Show full author list remove Hide full author list
Viruses 2023, 15(8), 1665; https://doi.org/10.3390/v15081665 - 30 Jul 2023
Cited by 8 | Viewed by 3722
Abstract
Achromobacter species colonization of Cystic Fibrosis respiratory airways is an increasing concern. Two adult patients with Cystic Fibrosis colonized by Achromobacter xylosoxidans CF418 or Achromobacter ruhlandii CF116 experienced fatal exacerbations. Achromobacter spp. are naturally resistant to several antibiotics. Therefore, phages could be valuable [...] Read more.
Achromobacter species colonization of Cystic Fibrosis respiratory airways is an increasing concern. Two adult patients with Cystic Fibrosis colonized by Achromobacter xylosoxidans CF418 or Achromobacter ruhlandii CF116 experienced fatal exacerbations. Achromobacter spp. are naturally resistant to several antibiotics. Therefore, phages could be valuable as therapeutics for the control of Achromobacter. In this study, thirteen lytic phages were isolated and characterized at the morphological and genomic levels for potential future use in phage therapy. They are presented here as the Achromobacter Kumeyaay phage collection. Six distinct Achromobacter phage genome clusters were identified based on a comprehensive phylogenetic analysis of the Kumeyaay collection as well as the publicly available Achromobacter phages. The infectivity of all phages in the Kumeyaay collection was tested in 23 Achromobacter clinical isolates; 78% of these isolates were lysed by at least one phage. A cryptic prophage was induced in Achromobacter xylosoxidans CF418 when infected with some of the lytic phages. This prophage genome was characterized and is presented as Achromobacter phage CF418-P1. Prophage induction during lytic phage preparation for therapy interventions require further exploration. Large-scale production of phages and removal of endotoxins using an octanol-based procedure resulted in a phage concentrate of 1 × 109 plaque-forming units per milliliter with an endotoxin concentration of 65 endotoxin units per milliliter, which is below the Food and Drugs Administration recommended maximum threshold for human administration. This study provides a comprehensive framework for the isolation, bioinformatic characterization, and safe production of phages to kill Achromobacter spp. in order to potentially manage Cystic Fibrosis (CF) pulmonary infections. Full article
Show Figures

Figure 1

15 pages, 5908 KiB  
Article
Particle Deposition in Large-Scale Human Tracheobronchial Airways Predicted by Single-Path Modelling
by Cuiyun Ou, Jian Hang, Jiajia Hua, Yuguo Li, Qihong Deng, Bo Zhao and Hong Ling
Int. J. Environ. Res. Public Health 2023, 20(5), 4583; https://doi.org/10.3390/ijerph20054583 - 4 Mar 2023
Cited by 5 | Viewed by 2540
Abstract
The health effects of particles are directly related to their deposition patterns (deposition site and amount) in human airways. However, estimating the particle trajectory in a large-scale human lung airway model is still a challenge. In this work, a truncated single-path, large-scale human [...] Read more.
The health effects of particles are directly related to their deposition patterns (deposition site and amount) in human airways. However, estimating the particle trajectory in a large-scale human lung airway model is still a challenge. In this work, a truncated single-path, large-scale human airway model (G3–G10) with a stochastically coupled boundary method were employed to investigate the particle trajectory and the roles of their deposition mechanisms. The deposition patterns of particles with diameters (dp) of 1–10 μm are investigated under various inlet Reynolds numbers (Re = 100–2000). Inertial impaction, gravitational sedimentation, and combined mechanism were considered. With the increasing airway generations, the deposition of smaller particles (dp < 4 μm) increased due to gravitational sedimentation, while that of larger particles decreased due to inertial impaction. The obtained formulas of Stokes number and Re can predict the deposition efficiency due to the combined mechanism in the present model, and the prediction can be used to assess the dose-effect of atmospheric aerosols on the human body. Diseases in deeper generations are mainly attributed to the deposition of smaller particles under lower inhalation rates, while diseases at the proximal generations mainly result from the deposition of larger particles under higher inhalation rates. Full article
(This article belongs to the Special Issue Meteorology/Air Pollution and Health Impact)
Show Figures

Figure 1

19 pages, 6462 KiB  
Article
Novel Approach Combining Transcriptional and Evolutionary Signatures to Identify New Multiciliation Genes
by Audrey Defosset, Dorine Merlat, Laetitia Poidevin, Yannis Nevers, Arnaud Kress, Olivier Poch and Odile Lecompte
Genes 2021, 12(9), 1452; https://doi.org/10.3390/genes12091452 - 21 Sep 2021
Cited by 3 | Viewed by 2877
Abstract
Multiciliogenesis is a complex process that allows the generation of hundreds of motile cilia on the surface of specialized cells, to create fluid flow across epithelial surfaces. Dysfunction of human multiciliated cells is associated with diseases of the brain, airway and reproductive tracts. [...] Read more.
Multiciliogenesis is a complex process that allows the generation of hundreds of motile cilia on the surface of specialized cells, to create fluid flow across epithelial surfaces. Dysfunction of human multiciliated cells is associated with diseases of the brain, airway and reproductive tracts. Despite recent efforts to characterize the transcriptional events responsible for the differentiation of multiciliated cells, a lot of actors remain to be identified. In this work, we capitalize on the ever-growing quantity of high-throughput data to search for new candidate genes involved in multiciliation. After performing a large-scale screening using 10 transcriptomics datasets dedicated to multiciliation, we established a specific evolutionary signature involving Otomorpha fish to use as a criterion to select the most likely targets. Combining both approaches highlighted a list of 114 potential multiciliated candidates. We characterized these genes first by generating protein interaction networks, which showed various clusters of ciliated and multiciliated genes, and then by computing phylogenetic profiles. In the end, we selected 11 poorly characterized genes that seem like particularly promising multiciliated candidates. By combining functional and comparative genomics methods, we developed a novel type of approach to study biological processes and identify new promising candidates linked to that process. Full article
(This article belongs to the Special Issue Genetics of Rare Disease)
Show Figures

Figure 1

13 pages, 1831 KiB  
Brief Report
The Effect of Azithromycin Plus Zinc Sulfate on ACE2 Expression through IκBα of Human Respiratory Cells in SARS-CoV-2: In Vitro Study
by Chia-Wei Chang, Ming-Cheng Lee, Bor-Ru Lin, Yen-Pei Lu, Yih-Jen Hsu, Chun-Yu Chuang, Tsung-Tao Huang and Yin-Kai Chen
COVID 2021, 1(1), 263-275; https://doi.org/10.3390/covid1010021 - 20 Aug 2021
Cited by 1 | Viewed by 8112
Abstract
Large-scale efforts have been persistently undertaken for medical prophylaxis and treatment of COVID-19 disasters worldwide. A variety of novel viral spike protein-targeted vaccines have been extensively distributed for global inoculation based on accelerated approval. With concerns of emerging spike protein mutations, we revisited [...] Read more.
Large-scale efforts have been persistently undertaken for medical prophylaxis and treatment of COVID-19 disasters worldwide. A variety of novel viral spike protein-targeted vaccines have been extensively distributed for global inoculation based on accelerated approval. With concerns of emerging spike protein mutations, we revisited the early but inconclusive clinical interest in the repurposed combination of azithromycin (AZT) and zinc supplements with safety advantages. The aim of this study is to provide in vitro proof of concept for IκBα associated rapid and synergistic suppression of angiotensin-converting enzymes 2 (ACE2) following combination treatments with AZT plus zinc sulfate in two human airway cells with ACE2 expression, Calu-3 and H322M, representative cells of the human upper and lower airway origin respectively. Clinical timing of AZT combined with zinc is indicated based on suppression of the key cellular entry molecule, ACE2, of SARS-CoV-2. Full article
(This article belongs to the Topic Broad-Spectrum Antiviral Agents)
Show Figures

Figure 1

Back to TopTop