Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = lanthanum orthoferrite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 22223 KiB  
Article
Enhanced Fenton-like Catalytic Activation of Peroxymonosulfate over Macroporous LaFeO3 for Water Remediation
by Elzhana Encheva, Savina Koleva, Martin Tsvetkov and Maria Milanova
Crystals 2025, 15(5), 394; https://doi.org/10.3390/cryst15050394 - 24 Apr 2025
Viewed by 388
Abstract
Four different-sized carbon microspheres, CS, obtained by a facile hydrothermal method, are applied as a hard template for the preparation of a series of macroporous LaFeO3. The average particle size of the CS obtained is between 0.350 and 0.700 µm. The [...] Read more.
Four different-sized carbon microspheres, CS, obtained by a facile hydrothermal method, are applied as a hard template for the preparation of a series of macroporous LaFeO3. The average particle size of the CS obtained is between 0.350 and 0.700 µm. The macroporous LaFeO3 are tested in a Fenton-like activation of peroxymonosulfate, PMS, for oxidation of tetracycline hydrochloride, TCH, in model water solution under visible-light irradiation. The effect of parameters such as type of irradiation, temperature of the reaction, and type of the water matrixes was tested. The oxidation of the pollutant TCH is evaluated by total organic carbon and organic nitrogen measurements. The results showed the superior catalytic activity of macroporous LaFeO3 in comparison to pure LaFeO3. Rate constants between 0.036 and 0.184 min−1 at 25 °C were obtained. The activation energy for the process with the most active macroporous LaFeO3 was 33.88 kJ/mol, a value lower than for the catalytic process with PMS only, proving the positive role of the macroporous LaFeO3 for TCH degradation. Radical scavenger measurements showed that singlet oxygen, produced during the catalytic degradation process, was responsible for the performance of macroporous LaFeO3/PMS/visible light for TCH degradation. The catalysts proved to be efficient and recyclable. Full article
(This article belongs to the Special Issue Rare Earths-Doped Materials (3rd Edition))
Show Figures

Figure 1

16 pages, 4227 KiB  
Article
Mechanochemically Synthesized Solid Solutions La1−xCexFeO3+x/2 for Activation of Peroxydisulfate in Catalytical Reaction for Tetracycline Degradation
by Martin Tsvetkov, Elzhana Encheva, Stefani Petrova, Ivanka Spassova and Maria Milanova
Crystals 2023, 13(5), 769; https://doi.org/10.3390/cryst13050769 - 5 May 2023
Cited by 5 | Viewed by 1966
Abstract
The synthesis of orthoferrites of the type La1−xCexFeO3+x/2, x = 0.00, 0.01, 0.03, 0.05, and 0.07, by applying a simple and effective mechanochemical transformation from the constituent oxides is presented. Physicochemical methods such as powder X-ray diffraction [...] Read more.
The synthesis of orthoferrites of the type La1−xCexFeO3+x/2, x = 0.00, 0.01, 0.03, 0.05, and 0.07, by applying a simple and effective mechanochemical transformation from the constituent oxides is presented. Physicochemical methods such as powder X-ray diffraction (XRD), transmission electron microscopy (TEM), UV–Vis spectroscopy, and Brunauer–Emmett–Teller (BET) adsorption were applied to gain information about the effect of Ce4+ content on the structural, textural, and optical properties of the samples. The catalytic activity of the samples for water decontamination was determined in a photo-Fenton-like activation of persulfate for removal of tetracycline hydrochloride as model pollutant. The presence of persulfate, PDS, considerably increased the removal efficiency under visible light illumination. Full article
(This article belongs to the Special Issue Rare Earths-Doped Materials (Volume II))
Show Figures

Figure 1

26 pages, 6586 KiB  
Article
Photocatalytic Bactericidal Performance of LaFeO3 under Solar Light in the Presence of Natural Organic Matter: Spectroscopic and Mechanistic Evaluation
by Nazmiye Cemre Birben, Ezgi Lale, Renato Pelosato, Nazli Turkten, Isabella Natali Sora and Miray Bekbolet
Water 2021, 13(19), 2785; https://doi.org/10.3390/w13192785 - 8 Oct 2021
Cited by 6 | Viewed by 2846
Abstract
Solar photocatalytic inactivation (SPCI) of E. coli as the indicator microorganism using LaFeO3 (LF) has already been investigated under various experimental conditions, excluding any role of natural organic matter (NOM). However, comprehensive information about the behavior of E. coli and its inactivation [...] Read more.
Solar photocatalytic inactivation (SPCI) of E. coli as the indicator microorganism using LaFeO3 (LF) has already been investigated under various experimental conditions, excluding any role of natural organic matter (NOM). However, comprehensive information about the behavior of E. coli and its inactivation mechanism in the presence of NOM, as well as the behavior of NOM components via solar photocatalysis using LF as a photocatalyst, has prime importance in understanding real natural water environments. Therefore, in this study, further assessment was devoted to explore the influence of various NOM representatives on the SPCI of E. coli by using LF as a novel non-TiO2 photocatalyst. The influence of NOM as well as its sub-components, such as humic acids (HA) and fulvic acids (FA), was also investigated to understand different NOM-related constituents of real natural water conditions. In addition to spectroscopic and mechanistic investigations of cell-derived organics, excitation emission matrix (EEM) fluorescence spectra with parallel factor multiway analysis (PARAFAC) modeling revealed further information about the occurrence and/or disappearance of NOM-related and bacteria-related fluorophores upon LF SPCI. Both the kinetics as well as the mechanism of the LF SPCI of E. coli in the presence of NOM compounds displayed substrate-specific variations under all conditions. Full article
(This article belongs to the Special Issue New Perspectives in Photocatalytic Water Treatment)
Show Figures

Figure 1

17 pages, 2621 KiB  
Article
Photocatalytic Bactericidal Performance of LaFeO3 under Solar Light: Kinetics, Spectroscopic and Mechanistic Evaluation
by Nazmiye Cemre Birben, Ezgi Lale, Renato Pelosato, Ceyda Senem Uyguner Demirel, Isabella Natali Sora and Miray Bekbolet
Water 2021, 13(9), 1135; https://doi.org/10.3390/w13091135 - 21 Apr 2021
Cited by 11 | Viewed by 3066
Abstract
Lanthanum orthoferrites are a versatile class of catalysts. Here, the photocatalytic bactericidal performance of LaFeO3 (LF) to inactivate pathogenic microorganisms, i.e., Escherichia coli (E. coli), in water under simulated solar irradiation conditions was investigated. Various competing and contributing factors were [...] Read more.
Lanthanum orthoferrites are a versatile class of catalysts. Here, the photocatalytic bactericidal performance of LaFeO3 (LF) to inactivate pathogenic microorganisms, i.e., Escherichia coli (E. coli), in water under simulated solar irradiation conditions was investigated. Various competing and contributing factors were covered to visualize the reaction medium consisting of E. coli K12 cells, organic sub-fractions formed by cell destruction, and LF surface. LF solar photocatalytic inactivation (SPCI) kinetics revealed the highest inactivation rate in ultrapure water as expected, followed by distilled water (DW), aqueous solution containing anions and cations (WM) and saline solution (SS). Characterization of the released organic matter was achieved by UV-vis and fluorescence spectroscopic techniques as well as organic carbon contents (DOC). Upon SPCI, significant amounts of K+ along with released protein contents were detected expressing cell wall destruction and lysis. Under the specified experimental conditions, in the presence of released intracellular organic and inorganic components via cell lysis, a significant count of E. coli was still present in SS, whereas almost all bacteria were removed in other matrices due to various challenging reasons. Based on the presented data, SPCI of E. coli using LF as a novel photocatalyst was successfully demonstrated as an alternative and promising method for disinfection purposes. Full article
(This article belongs to the Special Issue New Perspectives in Photocatalytic Water Treatment)
Show Figures

Graphical abstract

Back to TopTop