Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = lake water surface temperature (LWST)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 15249 KiB  
Article
Variations of Lake Ice Phenology Derived from MODIS LST Products and the Influencing Factors in Northeast China
by Xiaoguang Shi, Jian Cheng, Qian Yang, Hongxing Li, Xiaohua Hao and Chunxu Wang
Remote Sens. 2024, 16(21), 4025; https://doi.org/10.3390/rs16214025 - 30 Oct 2024
Viewed by 1177
Abstract
Lake ice phenology serves as a sensitive indicator of climate change in the lake-rich Northeast China. In this study, the freeze-up date (FUD), break-up date (BUD), and ice cover duration (ICD) of 31 lakes were extracted from a time series of the land [...] Read more.
Lake ice phenology serves as a sensitive indicator of climate change in the lake-rich Northeast China. In this study, the freeze-up date (FUD), break-up date (BUD), and ice cover duration (ICD) of 31 lakes were extracted from a time series of the land water surface temperature (LWST) derived from the combined MOD11A1 and MYD11A1 products for the hydrological years 2001 to 2021. Our analysis showed a high correlation between the ice phenology measures derived by our study and those provided by hydrological records (R2 of 0.89) and public datasets (R2 > 0.7). There was a notable coherence in lake ice phenology in Northeast China, with a trend in later freeze-up (0.21 days/year) and earlier break-up (0.19 days/year) dates, resulting in shorter ice cover duration (0.50 days/year). The lake ice phenology of freshwater lakes exhibited a faster rate of change compared to saltwater lakes during the period from HY2001 to HY2020. We used redundancy analysis and correlation analysis to study the relationships between the LWST and lake ice phenology with various influencing factors, including lake properties, local climate factors, and atmospheric circulation. Solar radiation, latitude, and air temperature were found to be the primary factors. The FUD was more closely related to lake characteristics, while the BUD was linked to local climate factors. The large-scale oscillations were found to influence the changes in lake ice phenology via the coupled influence of air temperature and precipitation. The Antarctic Oscillation and North Atlantic Oscillation correlate more with LWST in winter, and the Arctic Oscillation correlates more with the ICD. Full article
Show Figures

Figure 1

16 pages, 3979 KiB  
Article
Retrieval of Plateau Lake Water Surface Temperature from UAV Thermal Infrared Data
by Ouyang Sima, Bo-Hui Tang, Zhi-Wei He, Dong Wang and Jun-Li Zhao
Atmosphere 2024, 15(1), 99; https://doi.org/10.3390/atmos15010099 - 12 Jan 2024
Cited by 4 | Viewed by 2030
Abstract
The lake water surface temperature (LWST) is a critical parameter influencing lake ecosystem dynamics and addressing challenges posed by climate change. Traditional point measurement techniques exhibit limitations in providing comprehensive LWST data. However, the emergence of satellite remote sensing and unmanned aerial vehicle [...] Read more.
The lake water surface temperature (LWST) is a critical parameter influencing lake ecosystem dynamics and addressing challenges posed by climate change. Traditional point measurement techniques exhibit limitations in providing comprehensive LWST data. However, the emergence of satellite remote sensing and unmanned aerial vehicle (UAV) Thermal Infrared (TIR) technology has opened new possibilities. This study presents an approach for retrieving plateau lake LWST (p-LWST) from UAV TIR data. The UAV TIR dataset, obtained from the DJI Zenmuse H20T sensor, was stitched together to form an image of brightness temperature (BT). Atmospheric parameters for atmospheric correction were acquired by combining the UAV dataset with the ERA5 reanalysis data and MODTRAN5.2. Lake Water Surface Emissivity (LWSE) spectral curves were derived using 102 hand-portable FT-IR spectrometer (102F) measurements, along with the sensor’s spectral response function, to obtain the corresponding LWSE. Using estimated atmospheric parameters, LWSE, and UAV BT, the un-calibrated LWST was calculated through the TIR radiative transfer model. To validate the LWST retrieval accuracy, the FLIR Infrared Thermal Imager T610 and the Fluke 51-II contact thermometer were utilized to estimate on-point LWST. This on-point data was employed for cross-calibration and verification. In the study area, the p-LWST method retrieved LWST ranging from 288 K to 295 K over Erhai Lake in the plateau region, with a final retrieval accuracy of 0.89 K. Results demonstrate that the proposed p-LWST method is effective for LWST retrieval, offering technical and theoretical support for monitoring climate change in plateau lakes. Full article
Show Figures

Figure 1

20 pages, 6174 KiB  
Article
Spatiotemporal Variations of Lake Surface Temperature across the Tibetan Plateau Using MODIS LST Product
by Kaishan Song, Min Wang, Jia Du, Yue Yuan, Jianhang Ma, Ming Wang and Guangyi Mu
Remote Sens. 2016, 8(10), 854; https://doi.org/10.3390/rs8100854 - 17 Oct 2016
Cited by 66 | Viewed by 7316
Abstract
Satellite remote sensing provides a powerful tool for assessing lake water surface temperature (LWST) variations, particularly for large water bodies that reside in remote areas. In this study, the MODIS land surface temperature (LST) product level 3 (MOD11A2) was used to investigate the [...] Read more.
Satellite remote sensing provides a powerful tool for assessing lake water surface temperature (LWST) variations, particularly for large water bodies that reside in remote areas. In this study, the MODIS land surface temperature (LST) product level 3 (MOD11A2) was used to investigate the spatiotemporal variation of LWST for 56 large lakes across the Tibetan Plateau and examine the factors affecting the LWST variations during 2000–2015. The results show that the annual cycles of LWST across the Tibetan Plateau ranged from −19.5 °C in early February to 25.1 °C in late July. Obvious diurnal temperature differences (DTDs) were observed for various lakes, ranging from 1.3 to 8.9 °C in summer, and large and deep lakes show less DTDs variations. Overall, a LWST trend cannot be detected for the 56 lakes in the plateau over the past 15 years. However, 38 (68%) lakes show a temperature decrease trend with a mean rate of −0.06 °C/year, and 18 (32%) lakes show a warming rate of (0.04 °C/year) based on daytime MODIS measurements. With respect to nighttime measurements, 27 (48%) lakes demonstrate a temperature increase with a mean rate of 0.051 °C/year, and 29 (52%) lakes exhibit a temperature decrease trend with a mean rate of −0.062 °C/year. The rate of LWST change was statistically significant for 19 (21) lakes, including three (eight) warming and 17 (13) cooling lakes for daytime (nighttime) measurements, respectively. This investigation indicates that lake depth and area (volume), attitude, geographical location and water supply sources affect the spatiotemporal variations of LWST across the Tibetan Plateau. Full article
Show Figures

Graphical abstract

Back to TopTop