Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = lacto-N-biosidase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 5152 KiB  
Article
Improvement of the Transglycosylation Efficiency of a Lacto-N-Biosidase from Bifidobacterium bifidum by Protein Engineering
by Marlene Vuillemin, Jesper Holck, Martin Matwiejuk, Eduardo S. Moreno Prieto, Jan Muschiol, Dora Molnar-Gabor, Anne S. Meyer and Birgitte Zeuner
Appl. Sci. 2021, 11(23), 11493; https://doi.org/10.3390/app112311493 - 4 Dec 2021
Cited by 13 | Viewed by 3616
Abstract
The lacto-N-biosidase LnbB from Bifidobacterium bifidum JCM 1254 was engineered to improve its negligible transglycosylation efficiency with the purpose of enzymatically synthesizing lacto-N-tetraose (LNT; Gal-β1,3-GlcNAc-β1,3-Gal-β1,4-Glc) in one enzymatic step. LNT is a prebiotic human milk oligosaccharide in itself and [...] Read more.
The lacto-N-biosidase LnbB from Bifidobacterium bifidum JCM 1254 was engineered to improve its negligible transglycosylation efficiency with the purpose of enzymatically synthesizing lacto-N-tetraose (LNT; Gal-β1,3-GlcNAc-β1,3-Gal-β1,4-Glc) in one enzymatic step. LNT is a prebiotic human milk oligosaccharide in itself and constitutes the structural core of a range of more complex human milk oligosaccharides as well. Thirteen different LnbB variants were expressed and screened for transglycosylation activity by monitoring transglycosylation product formation using lacto-N-biose 1,2-oxazoline as donor substrate and lactose as acceptor substrate. LNT was the major reaction product, yet careful reaction analysis revealed the formation of three additional LNT isomers, which we identified to have a β1,2-linkage, a β1,6-linkage, and a 1,1-linkage, respectively, between lacto-N-biose (Gal-β1,3-GlcNAc) and lactose. Considering both maximal transglycosylation yield and regioselectivity as well as minimal product hydrolysis, the best variant was LnbB W394H, closely followed by W465H and Y419N. A high transglycosylation yield was also obtained with W394F, yet the substitution of W394 and W465 of the subsite −1 hydrophobic platform in the enzyme with His dramatically impaired the undesirable product hydrolysis as compared to substitution with Phe; the effect was most pronounced for W465. Using p-nitrophenyl-β-lacto-N-bioside as donor substrate manifested W394 as an important target position. The optimization of the substrate concentrations confirmed that high initial substrate concentration and high acceptor-to-donor ratio both favor transglycosylation. Full article
(This article belongs to the Special Issue Carbohydrate-Active Enzymes for Valuable Product Creation)
Show Figures

Figure 1

15 pages, 2042 KiB  
Article
Transglycosylation Activity of Engineered Bifidobacterium Lacto-N-Biosidase Mutants at Donor Subsites for Lacto-N-Tetraose Synthesis
by Mireia Castejón-Vilatersana, Magda Faijes and Antoni Planas
Int. J. Mol. Sci. 2021, 22(6), 3230; https://doi.org/10.3390/ijms22063230 - 22 Mar 2021
Cited by 15 | Viewed by 3699
Abstract
The health benefits of human milk oligosaccharides (HMOs) make them attractive targets as supplements for infant formula milks. However, HMO synthesis is still challenging and only two HMOs have been marketed. Engineering glycoside hydrolases into transglycosylases may provide biocatalytic routes to the synthesis [...] Read more.
The health benefits of human milk oligosaccharides (HMOs) make them attractive targets as supplements for infant formula milks. However, HMO synthesis is still challenging and only two HMOs have been marketed. Engineering glycoside hydrolases into transglycosylases may provide biocatalytic routes to the synthesis of complex oligosaccharides. Lacto-N-biosidase from Bifidobacterium bifidum (LnbB) is a GH20 enzyme present in the gut microbiota of breast-fed infants that hydrolyzes lacto-N-tetraose (LNT), the core structure of the most abundant type I HMOs. Here we report a mutational study in the donor subsites of the substrate binding cleft with the aim of reducing hydrolytic activity and conferring transglycosylation activity for the synthesis of LNT from p-nitrophenyl β-lacto-N-bioside and lactose. As compared with the wt enzyme with negligible transglycosylation activity, mutants with residual hydrolase activity within 0.05% to 1.6% of the wild-type enzyme result in transglycosylating enzymes with LNT yields in the range of 10–30%. Mutations of Trp394, located in subsite -1 next to the catalytic residues, have a large impact on the transglycosylation/hydrolysis ratio, with W394F being the best mutant as a biocatalyst producing LNT at 32% yield. It is the first reported transglycosylating LnbB enzyme variant, amenable to further engineering for practical enzymatic synthesis of LNT. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Graphical abstract

34 pages, 2405 KiB  
Review
β-N-Acetylhexosaminidases for Carbohydrate Synthesis via Trans-Glycosylation
by Jan Muschiol, Marlene Vuillemin, Anne S. Meyer and Birgitte Zeuner
Catalysts 2020, 10(4), 365; https://doi.org/10.3390/catal10040365 - 29 Mar 2020
Cited by 30 | Viewed by 5439
Abstract
β-N-acetylhexosaminidases (EC 3.2.1.52) are retaining hydrolases of glycoside hydrolase family 20 (GH20). These enzymes catalyze hydrolysis of terminal, non-reducing N-acetylhexosamine residues, notably N-acetylglucosamine or N-acetylgalactosamine, in N-acetyl-β-D-hexosaminides. In nature, bacterial β-N-acetylhexosaminidases are mainly involved in [...] Read more.
β-N-acetylhexosaminidases (EC 3.2.1.52) are retaining hydrolases of glycoside hydrolase family 20 (GH20). These enzymes catalyze hydrolysis of terminal, non-reducing N-acetylhexosamine residues, notably N-acetylglucosamine or N-acetylgalactosamine, in N-acetyl-β-D-hexosaminides. In nature, bacterial β-N-acetylhexosaminidases are mainly involved in cell wall peptidoglycan synthesis, analogously, fungal β-N-acetylhexosaminidases act on cell wall chitin. The enzymes work via a distinct substrate-assisted mechanism that utilizes the 2-acetamido group as nucleophile. Curiously, the β-N-acetylhexosaminidases possess an inherent trans-glycosylation ability which is potentially useful for biocatalytic synthesis of functional carbohydrates, including biomimetic synthesis of human milk oligosaccharides and other glycan-functionalized compounds. In this review, we summarize the reaction engineering approaches (donor substrate activation, additives, and reaction conditions) that have proven useful for enhancing trans-glycosylation activity of GH20 β-N-acetylhexosaminidases. We provide comprehensive overviews of reported synthesis reactions with GH20 enzymes, including tables that list the specific enzyme used, donor and acceptor substrates, reaction conditions, and details of the products and yields obtained. We also describe the active site traits and mutations that appear to favor trans-glycosylation activity of GH20 β-N-acetylhexosaminidases. Finally, we discuss novel protein engineering strategies and suggest potential “hotspots” for mutations to promote trans-glycosylation activity in GH20 for efficient synthesis of specific functional carbohydrates and other glyco-engineered products. Full article
(This article belongs to the Special Issue Biocatalysts and Biocatalysis in Food Industry)
Show Figures

Graphical abstract

Back to TopTop